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ABSTRACT

,
Atomic motion in resonant and near resonant electromagnetic

radiation is investigated theoretically. The exposition begins with

a study of atomic motion in a resonant standing light wave, with a

view toward isotope separation by selective photodeflection, and

proceeds to the investigation of more general problems of atomic nmtion

in resonant radiation. The body of the work consists of six chapters,

each of which was prepared as a manuscript for publication in the

open literature.

The Sch~odinger equation for atomic motion in a resonant standing

wave is solved in Chapter 2 in the limit of short atom-field interaction

time. It is shown that momentum transfer from the field to the atom

in a standing wave proceeds at the rate of induced absorption-emission

processes rather than at the spontaneous rate characteristic of momentum

transfer in a plane running wave. The resulting rapid deflection process

in a standing wave leads to atomic deflections of sufficient magnitude

for isotope separation in a time less than the natural lifetime of the

excited atom, and hence circumvents the problem of metastable state

trapping encountered in attempts to separate isotopes using a running

wave. In Chapter 3 it is shown that a narrow beam of two-level atoms

is split by the amplitude gradient of a resonant electromagnetic wave

(optical Stern-Gerlach effect),

this fundamental feature of the

shown that an exact solution to

in a resonant standing wave can

and an experiment is proposed to test

resonant interaction. In Chapter 4 it is

the Schrodinger equation for atomic motion

be written in terms of Hathieu functions,
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and that the theory is readily generalized to include the case in which

N atomic levels take part in the resonant interaction. A formal analogy

between the problem of atomic motion in a standing light wave and dif-
*

fraction of light by ultrasound is also discussed in this chapter. An

* alternative approach to the theory of atomic motion in an electromagnetic

wave, based on Ehrenfest’s theorem and the optical Bloch equations,

including effects of spontaneous emission and detuning of the applied

field, is developed in Chapter 5. The utility of this theory is illus-

trated by application to problems of atomic trapping and cooling by

the radiation force. The simplicity of calculations in this chapter

show that the Ehrenfest-Bloch equations provide a convenient and

fruitful framework in which to study such problems. In Chapter 6 the

Ehrenfest-Bloch formalism is generalized to take account of laser phase

fluctuations and the associated finite linewidth of laser radiation.

It is found that fluctuations of the laser radiation alter the predictions

of the monochromatic theory only when the laser linewidth approaches or

exceeds the natural linewidth of the resonant transition, a situation not

usually encountered in practice. Finally, in Chapter 7, the influence

on atomic motion of quantum-mechanical fluctuations of the radiation

force is investigated. It is shown that fluctuations of the radiation

force result from interaction of the fluctuating atomic dipole moment

with the applied field as well as from random recoils accompanying

.* spontaneous emission. Atomic motion in the fluctuating radiation force

is described by a Fokker-Planck equation, and this equation is used to
.

show that quantum fluctuations place a lower bound on the temperature

achievable by radiation cooling, and lead to finite, often short,

confinement times for atoms in radiation traps.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

.

.

An atom in a resonant or near resonant electromagnetic wave

experiences a force due to momentum transfer from the field. The

momentum of one photon is transferred to the atom in the process of

absorption, and in the emission process a reco

negative of the momentum of the emitted photon

The momentum transferred to the atom in a sing”

event is quite small. For example, in the cas~

1 momentum equal to the

is imparted to the atom.

e absorption or emission

of sodium, absorption

of one photon on the D2 line (a = 5890~) changes the atomic momentum

by the amount AP = h/~~ 10-22 g cm/s. If this change of momentum takes

place transverse to the direction of propagation of a sodium atomic

beam of typical thermal velocity (VX 5 x 104 cm/s), the beam is deflected

through an angle of 50 urad or .003 degrees. Although deflections of

1,2
this magnitude are observable , one-photon deflections are generally

far too small to be of any practical interest. For practical purposes,

e.g., isotope separation, angular deflection on the order of a thousand”

times the above value is required, and consequently repeated absorption-

emission processes must be considered.

The simplest photodeflection process capable of producing a large

deflection is that which occurs in a plane running wave. Absorption-

emission processes in a plane wave take place at two distinct rates.

Photons are absorbed from and emitted into the plane wave at the stimu-

lated or induced rate Q, and occasionally photons are spontaneously

emitted in random directions at the spontaneous rate A (A is the

Einstein spontaneous emission coefficient). The induced rate is
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determined by the intensity I of the wave and the transition dipole

moment P of the atom through the relation n = B(81TI/c)“z/* . In a

strong field n may exceed A by several orders of magnitude. Now in
I

the induced absorption-emission process the atom gains momentum %1

upon absorbing a photon from the wave, but loses an equal momentum

due to recoil when the photon is emitted. This occurs in a plane

wave because, with only one field mode occupied, induced emission can

only add a photon to that mode. It follows that there is no net momen-

tum transfer associated with the induced absorption-emission process

in a plane wave, and no average force results from this process. In

the process of absorption followed by spontaneous emission, on the

other hand, the atom gains momentum +~ upon absorbing a photon, but

does not lose this momentum in emission. Photons are spontaneously

emitted in random directions, and hence the average recoil momentum

delivered to the atom in emission is zero. The atom gains the momentum

of one incident photon, on the average, for each spontaneous event.

NOW the rate of spontaneous events is Apz, where pz is the probability

that the upper atomic level is occupied (we are assuming that only two

atomic energy levels take part in the resonant interaction). Therefore

the rate of momentum transfer to the atom in a plane running wave,

i.e., the radiation force is

This force will be referred to as the spontaneous radiation force.

In a strong field the atomic transition is saturated (p2 = 1/2) and

(1)

,
Eq. (1) becomes

(2)
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If saturating radiation is applied transverse to a sodium atomic beam

of velocity v = 5 x 104 cm/s (A = 5890~, A = 6 x 107 S-l), the beam

experiences a deflection of 1° in traveling a distance 0.5 cm in the

radiation.

The spontaneous radiation force was first observed by Frishl in

1933, and was later studied experimentally by Picque and Vialle2 usin,g

the

and

quasimonochromatic

Woste3 using laser

Because different

transition frequencies

light of a sodium lamp, and by Schieder, Walther

radiation.

isotopes of an element have slightly different

(the isotope shift), the spontaneous radiation

force can be selectively applied to one isotope in a mixture of isotopes,

provided the isotope shift exceeds the linewidth of the transition and

the spectral width of the applied field. Therefore it is possible, in

certain favorable cases, to separate isotopes by selectively deflecting

the isotope of interest from an atomic beam containing several isotopes.

Isotope separation by selective photodeflection using the spontaneous

radiation force was first demonstrated by Bernhardt et. al.4 for

isotopes of barium.

The principle limitation of an isotope separation process based

on the spontaneous radiation force is that, for many atoms and molecules,

transitions from the upper resonant level to one or more metastable

levels terminate the deflection process. Since about one thousand

absorption-emission events are required to produce a

cient magnitude for practical isotope

even a small branching ratio from the

level will remove a large fraction of

separation, it

upper resonant

the atoms from

deflection of suffi-

is clear that

level to a metastable

the interaction
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cycle before any significant deflection has taken place. In effect,

transitions to a metastable level turn

early stage of the deflection process,

separation impractical in many cases.

off the radiation force at an

and make this approach to isotope

This problem was encountered by

Bernhardt et. al.4 in their work on barium, where it was found that

the maximum obtainable momentum transfer on the 5535.7~ resonance line

was equal to the momentum of 25 photons, i.e., a maximum of 25 absorption

emission events were possible before the atom was trapped in the meta-

stable 6s5d 1D2 state.

The problem of metastable state trapping is associated with the fact

that the spontaneous radiation force must act for a time that is long

compared to the natural lifetime of the upper resonant level in order

to produce a large deflection. If momentum could be transferred to the

atom at the induced rate n, rather than the spontaneous rate A, then in

a strong field, where Q is several orders of magnitude larger than A,

it might be possible to produce large deflections in a time that is

short compared to the natural lifetime, and thereby avoid the problem

of transitions to metastable levels. The work described here began

with an attempt to determine under what conditions momentum transfer

at the induced rate is possible.

As noted above, there is no net momentum transfer due to induced

processes in a plane running wave because the absorbed and emitted

photons necessarily have the same momentum. However, if two or more

plane running waves propagating in different directions act on the atom

simultaneously, as for example in a standing wave (which consists of two

counterpropagating running waves), there exists the possibility that a



5

photon absorbed from one of the waves

into one of the other waves (momentum

momentum A~ =’fi(k2-k,) at the induced

on the atom then depends on the rates

(momentum +i~l ) wi11 be emitted

fi~2) with a resultant transfer of

rate n. The average force acting

of the various induced processes,

but in general it is expected that the resulting induced force will be

of order of magnitude Fx~41k which can be thousands of times larger

than the magnitude ~tik of the spontaneous force.

In a standing wave there are four distinct induced processes as

illustrated in Figure 1. The atom can absorb a photon from either of

the running waves and emit a photon into the same wave, with no net

transfer of momentum, or the atom can absorb a photon from either wave

and emit a photon into the counterpropagating wave, with a transfer of

momentum AP = fltik to the atom. A detailed calculation of atomic

motion in a resonant standing wave is required to obtain the resulting

distribution of atomic deflections after a large number of induced

absorption-emission events have taken place. This calculation is carried

out in Chapter 2. It is shown there that, for short interaction time,

the probability Pn that the atom gains momentum AP = n~k equal to the

momentum of n photons is

Pn(t) = J;(nt), (3)

1/2/fi is
where Jn(x) is the Bessel function of order n, n = P(8mI/c)

the induced rate or Rabi flopping frequency of the two-level atom, and

t is the interaction time. The distribution Pn is plotted in figure 2(a),



(b), and (c) for ~t = 10, 20, and 30 respectively. Pnmay also be

interpreted as the probability that the atom is deflected through

angle ~n = nffk/Pz, where Pz is the initial atomic momentum. It is

seen from Figure 2 that the spread of deflections increases linearly

with the interaction time, and the maximum deflection is @max~ ntTik/Pz,

indicating that momentum is indeed transferred to the atom at the induced

rate Q. In a typical case it is estimated that deflections of order

@ = 3° can be achieved for an interaction time t = 6 ns. Deflections
max

of this magnitude are sufficient for isotope separation, and the inter-

action time is less than the natural lifetime of the atomic transition.

Therefore this approach to laser isotope separation circumvents the

problemof transitions to metastable levels. Such transitions do not

have time to occur during the short interaction time of the induced

deflection process.

These initial encouraging results lead to a number of questions

concerning the ultimate efficiency and limitations of the process.

The calculation of Chapter 2 is based on an approximation that is valid

only in the limit of short interaction time, it considers only the case

of exact resonance, it treats the atom as a two-level system, and it

ignors spontaneous emission. Therefore some of the questions that

remained to be answered were: (1) ldhat is the maximum deflection

obtainable in a resonant standing wave if no constraint is placed on the

interaction time?, (2) How is the distribution of atomic deflections

altered if more than two atomic states take part in the resonant

interaction, e.g., if one or both of the interacting levels is degenerate?,

(3) What is the effect on atomic deflections if the frequency of the

.,

●
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app” ied field is not exactly equal to the Bohr transition frequency of

the atom?, and (4) How does spontaneous emission influence the distribu-

tion of atomic deflections when the interaction time is long compared

to the natural lifetime of the excited state? A search of the literature

revealed that existing theory of atomic motion in resonant radiation

was not sufficiently well developed to answer the above questions.

Consequently the scope of the research expanded from the narrow question

of the feasibility of isotope separation by photodeflection in a standing

wave to more basic questions concerning the motion of atoms and molecules

in resonant and near resonant electromagnetic radiation. As significant

results were obtained, manuscripts were prepared and submitted for publi-

cation in the open literature. The body of this dissertation (Chapters

2 through 7) consists of a collection of these manuscripts. The content

of these chapters will now be summarized.

The first manuscript

a Resonant Standing Light

motion in a standing wave

principle results of this

standing wave proceeds at

(Chapter 2), entitled “Deflection of Atoms by

Wave, ” contains the calculation of atomic

which has already been dfscussed above. The

chapter are: (1) that momentum transfer in a

the induced rate, and (2) that the resulting

rapid deflection process in a strong field overcomes the problem of

metastable state trapping.

In the second manuscript (Chapter 3) entitled “Theory of Atomic

Motion in a Resonant Electromagnetic Wave,” the motion of a two-level

atom in an exactly resonant electromagnetic wave of arbitrary amplitude

E(~) is investigated neglecting effects of spontaneous emission.
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A simple calculation shows that the motion of the atom is described by

two independent noninterfering wave functions u+(;,t) and’u (~,t), each

of which satisfies a simple time-dependent Schr6dinger equation

but with potential energies, V+(;) =&E(~) and V-(x) = -&IE(~), of

opposite sign, where v is the transition dipole moment of the atom. It

follows from this result that a narrow atomic beam is split by the

amplitude gradient of the resonant radiation in much the same way as the

gradient of a magnetic field splits an atomic beam in the Stern-Gerlach

experiment. Finally, an experiment is proposed to test the two-component

theory developed in this chapter.

The fourth chapter entitled “Diffraction of Atoms and Molecules by

a Resonant Standing Electromagnetic Wave” extends the results of the

two preceding chapters to include the case in which more than two

atomic levels strongly interact with the applied field. This work also

removes the restriction to short interaction time of chapter 2
..

showing that an exact solution of the Schrodinger equation for

in a resonant standing wave can be written in terms of Mathieu

However, effects of spontaneous emission are still neglected.

by

an atom

functions.

When N atomic levels take part in the resonant interaction, it is

found that the motion of the atom is determined by N independent non-

interfering “eigenwaves” un(~,t), 1 < n < N, and the nth eigenwave
..

satisfies a time-dependent Schrodinger equation with potential energy

Vn(i) ‘~unE(~), where Pn is the nth eigenvalue of the matrix of

transition moments connecting the N levels. This again leads to a

splitting of an atomic beam by the amplitude gradient of the standing

wave, but now the beam splits into N components. The splitting differs

t

.
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*

from that occurring in the Stern-Gerlach experiment in that the components

of the split beam are not necessarily equally spaced, and the probabilities

that the atom occupies the various components are not, in general, equal,

but rather depend on the structure of the dipole moment matrix.

Since each of the eigenwaves un(~,t) satisfies a Schrodinger equa-

tion with potential energy Vn(~) =~unE(;), and since the amplitude

of a plane standing wave is a periodic (sinusoidal) function of position,

the deflection of an atom by a resonant standing wave is, in fact, a

diffraction process in which the atom is diffracted by the periodic

potential it experiences in the standing wave. Chapter 4 shows that

diffraction of atoms by a standing light wave is formally identical to

the problem of diffraction of light by ultrasonic waves in a transparent

liquid or solid, and hence many of the results of the theory of diffrac-

tion of light by ultrasound are immediately applicable to the problem

of diffraction of atoms by a standing light wave.

All of the work described thus far is restricted to the case of

exact resonance and ignores spontaneous emission. In practice neither

of these approximations is fully justified. The laser frequency is

generally not exactly equal to the Bohr transition frequency of the

atom, and the approximation of neglecting spontaneous

only for interaction times that are short compared to

time of the excited atom. The latter restriction can

optical frequencies. For example, if the atoms in an

emission is valid

the natural life-

be severe at

atomic beam of

typical thermal velocity v = 5 x 104 cm/s have a strong optical transition

(lifetime T- 10-7 see), the constraint t< T on the interaction time t

leads to the constraint L<v T = 5 x 10-”3cm = 50 Pm on the thickness L
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of the interaction region. Thus the results of Chapters 2, 3, and 4 can

be applied with confidence, at optical frequencies, only when the interac-

tion region is extremely thin. It should be noted that at infrared

and microwave frequencies the constraint t < T is much less severe,

because at these frequencies the natural lifetimes are much longer,

but in this case tuning of the radiation to exact resonance becomes

more difficult because the natural linewidths are correspondingly

much narrower.

A first step toward a more general theory of atomic motion in

electromagnetic radiation, that includes effects of spontaneous emission

and detuning of the applied field, is taken in the fifth chapter entitled

“Atomic Motion in Resonant Radiation: An Application of Ehrenfest’s

Theorem.” In this work the center-of-mass motion of the atom is cal-

culated on the assumption that the atomic wave packet may be regarded

as small compared to the distance over which the applied field changes

by a significant amount. It is found that the center-of-mass and

internal motions of the atom are coupled, The internal motion is

described by a set of optical Bloch equations, driven by the electric

field at the position of the moving atom, while the radiation force,

which drives the center-of-mass motion, depends on the instantaneous

value of the Bloch vector. The coupled equations for the internal and

translational motions of the atom, which we term the Ehrenfest-Bloch

equations, are applied to a number of problems of current experimental

interest in this chapter. Specifically, the Ehrenfest-Bloch equations

are used to obtain explicit formulas for the radiation force in:
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●

(1) a plane running wave, (2) a plane standing wave, (3) a combination

of running and standing waves, and (4) a coliminated Gaussian beam.

.
Results of these calculations are discussed in connection with recent

proposals to trap atoms and molecules by use of the resonant light force

of laser radiation. In addition, a formula for the radiation damping

force in a weak standing wave, that might be used to cool an atomic

vapor to a very low temperature (T - 10-4 k), is derived in this

chapter. The simplicity of the calculations presented in this chapter

show that an approach based on Ehrenfest’s theorem provides a convenient

and fruitful framework in which to study such problems.

In Chapter 6 the Ehrenfest-Bloch equations are generalized to take

account of phase fluctuations of laser radiation under the title “Atomic

Motion in Resonant Fluctuating Laser Radiation.” All real sources of

electromagnetic radiation, including the laser, undergo fluctuations, and

hence are not perfectly monochromatic. The finite linewidth of laser

radiation is due primarily to phase fluctuations at the source, and the

phase fluctuations are well described by the so-called phase-diffusion

model. The purpose of this chapter is to determine whether or not the

finite bandwidth of the laser radiation has any significant

influence on atomic motion in laser radiation. The principle result of

the chapter is that laser fluctuations alter the predictions of the

monochromatic theory only when the laser linewidth approaches or exceeds

the natural linewidth of the resonant atomic transition. Since, in

practice, the laser linewidth is generally narrower than the natural

width of the resonant transition, the effect of laser fluctuations is
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usually quite negligible. It should be noted that the fluctuations

considered in this chapter are fluctuations of the classical electro-

magnetic field, and are entirely different from the quantum-mechanical

fluctuations considered in Chapter 7. Quantum fluctuations of

the radiation force occur in perfectly monochromatic radiation.

A theory based on Ehrenfest’s theorem describes the motion of the

centroid of the center-of-mass probability density. It says nothing

about the spread of the atomic wave packet about the centroid. Because

of this limitation, results of the Ehrenfest-Bloch equations can,

in some cases, be misleading. For example, the Ehrenfest-Bloch equations

predict that the radiation force acting on an atom in a standing wave

vanishes when the radiation is tuned to exact resonance, while a more

detailed theory (Chapter 3) shows that the atomic trajectory is split

by the resonant radiation, in this case. The splitting is sy~etric,

however, so the centroid of the atomic wave packet is not accelerated.

Since the radiation force of Ehrenfest’s theorem is defined as the mass

of the atom times the acceleration of the centroid, a vanishing radiation

force on resonance is certainly consistent with the optical Stern-

Gerlach effect, however, this example shows quite clearly that Ehrenfest’s

theorem provides only limited information about the actual motion of the

atom.

A more complete description of atomic motion in resonant radiation,

including effects of detuning and spontaneous emission, is developed

in the seventh chapter entitled “Quantum-Mechanical Fluctuations of the

.

.
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.

Resonance-Radiation Force.” Using the Heisenberg equations for the

center-of-mass motion of the atom, the mean radiation force and the

quantum-mechanical fluctuations of the radiation force about its mean

value are calculated. The mean radiation force causes an average

deflection of the atomic trajectory, in agreement with the earlier

theory based on Ehrenfest’s theorem, while the fluctuating component

of the radiation force gives rise to diffusion of atomic momentum.

The motion of the atom under the influence of the fluctuating radiation

pressure is described by a Fokker-Planck equation in which the mean

force and momentum diffusion constant enter as coefficients.

Diffusion of atomic momentum in resonant radiation can be under-

stood from several different points of view. According to one inter-

pretation, diffusion results from repeated splitting of the atomic

trajectory as a result of spontaneous emission. If the atom is initially

in the ground state, the atomic trajectory is split into two components

by the gradient of the applied field amplitude, as described in Chapter 3.

Then after each spontaneous emission, which returns the atom to the ground

state, each component of the split beam again splits, and repetition

of this process leads to diffusion of the atomic momentum. From this

point of view, the diffusion is closely related to the optical Stern-

Gerlach effect. Alternatively, the diffusion may be regarded as a

result of random recoils due to both induced and spontaneous absorption-

emission processes. Although the diffusion has several possible inter-

pretations, the calculation of the diffusion coefficient in this chapter

does not depend on the interpretation adopted. The diffusion coefficient

follows directly from the statistics of the operator force appearing in
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the Heisenberg equations of motion. The principle results of this

chapter follow from the fact that the momentum diffusion term in the

Fokker-Planck equation tends to increase the kinetic energy of the

atom. It is shown that quantum-mechanical fluctuations of the radiation

force place a lower bound on the temperature achievable by radiation

cooling, and often lead to short confinement times for atoms in radiation

traps.

Chapter 8 contains a brief

experiments on atomic motion in

remarks and reconrnendations for

overview of some of the more important

resonant radiation, and concluding

future work are made in Chapter 9.
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Chapter 2

DEFLECTION OF ATOMS BY A RESONANT STANDING ELECTROMAGNETIC WAVE
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Deflection of Atoms by a Resonant Standing Electromagnetic Nave

R. J. Cook and A. F

University of Ca”
Lawrence Livermore

P. O. Box 808, Livermore,

ABSTRACT

Bernhardt

ifornia
Laboratory
California 94550

Deflection of an atom due to momentum transfer from a strong

resonant standing electromagnetic wave is investigated theoretically

in the limit of short atom-field interaction time. The translational

and internal motions of the atom are treated quantum-mechanically, while

the field is treated classically. It is shown that momentum transfer

from a standing wave to an atom proceeds at the induced or Rabi rate,

rather than the spontaneous rate characteristic of spontaneous radiation

pressure. In a typical case, atomic deflections of order one degree are

achieved with 106 watt/cm2 field intensity in a time less than the

natural lifetime of the excited atom.
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I. INTRODUCTION

●

“

The use of a resonant electromagnetic wave, or a combination

of resonant and static fields, to deflect a beam of neutral atoms has been

the subject of renewed interest since the advent of high-power tunable

lasers. A potential application of laser deflection is to problems of

laser isotope separation.

Several methodsof photodeflection have been proposed5-g, some ,of

1-4,10,11which have been demonstrated experimentally .

require an interaction time that is long compared to

time of the excited atoms. This makes the practical

Most of these methods

the natural life-

application of

these methods impossible in many cases because an atom excited by the

resonant radiation makes transitions to metastable states which are not.
11

affected by the applied field . Such transitions remove atoms from the

interaction cycle, and little or no deflection is produced. The purpose

of this paper is to show that in a strong resonant standing wave,

significant atomic deflections can occur in a time less than the

spontaneous lifetime of the excited atom, and hence, the problem of

transitions to metastable’ levels is circumvented by the speed of the

process.

When an atomic beam is irradiated by a strong resonant electromagnetic

wave, absorption-emission processes proceed at two distinct rates.

Photons are absorbed from and emitted into the applied field at the

induced rate a, and occasionally photons are spontaneously emitted, in

random directions, at the spontaneous rate A. Deflection or scattering
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of the atomic beam results when momentum is transfered from the field

to the atoms, and the rate of momentum transfer depends on the nature

of the applied field.

If the applied field consists of a single plane wave, momentum is

transfered to the atoms at the spontaneous rate A. This momentum

transfer, i.e. radiation pressure, proceeds at the spontaneous rate

because absorption followed by induced emission into the same field

mode involves no net transfer of momentum, while absorption followed by

spontaneous emission transfers an average of one quantum of momentum for

each spontaneous event (isotropic spontaneous emission does not carry away

the momentum acquired by the atom through absorption).

If the applied field is composed of two or more plane waves, an atom

can absorb a photon from one of the plane waves and induced emission can

cause that photon to be emitted into a differmt plane wave, with a

resultant transfer of momentum at the induced rate ~. Since the induced

rate may exceed the spontaneous rate by many orders of magnitude in a

strong applied field, it is expected that deflection processes

operating at the induced rate will be more efficient and more rapid than

processes that operate at the spontaneous rate. In the following we

shall show that momentum transfer in a standing wave proceeds at the

induced rate, and that it is this feature of the interaction that gives

rise to the rapid deflection mentioned above.

In the model adopted here, the internal motion of the atom is

treated as a two-level system. The center-of-mass motion of the atom is

treated quantum-mechanically, and the resonant standing wave is treated

as a classically prescribed electric field. Analytic solutions of the

.
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Schr6dinger equation are obtained , in the rotating wave approximation,

on the assumption that the Doppler width associated with initial beam

spread and subsequent atomic deflection is small compared to the frequency

width associated with the finite time during which the atom interacts

with the resonant radiation.

In the following section, the theory of deflection of an atom

by a resonant standing wave is developed and the effect of finite

divergence in a beam of atoms is briefly discussed. In Section III

the limit of validity of our assumption concerning Doppler effect

is examined, and a numerical example is given to illustrate the

magnitude of deflections obtainable.

II. THEORY

The Hamiltonian for an atom in a classically prescribed electro-

magnetic field, in the dipole approximation, takes the familiar form

H = P2/2M + HO + j ● ;(~,t) (1)

where P2/2M is the kinetic energy associated with the center-of-mass

momentum ;, HO is the Hamiltonian for the internal motion of the unper-

turbed atom, ~ is the dipole moment operator, and ;(~,t) is the electric

field evaluated at the center-of-mass position fi.

We shall calculate the motion of an atom which starts out moving in

the positive z direction, enters a region of resonant radiation at z = O,

and exits the interaction region at z = L. The electric field in the
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interaction region is taken to be a standing wave of the form

+
E(x,t) = 2(8nI/c)l’2; COS kx COS d (2)

which is equivalent to two plane waves, each of intensity I, counterpro-

pagating along the x axis. The polarization vector ; is a unit vector

transverse to the x direction.

For an electric field of this form, only the x coordinate of the

center of mass appears in the Hamiltonian. It follows that motion of

the atom in the y and z directions is unaffected by the field, and only

motion in the x direction is of interest. Elimination of the inessential

degrees of freedom yields the Hamiltonian

H= Px2/2M+Ho - : “ i(x,t) (3)

for atomic motion in the x direction. As the atom moves along the z axis,

the interaction term in Equat”

the interaction region and is

Upon exiting the interact

on (3) is switched on as the atom enters

switched off as it leaves this region.

ion region, the atom has a certain probab-

ility density W(p) for momentum p in the x direction. This momentum

density determines the probability density for displacement x as z -+CO,

p(x) = (pZ/z) W(PZW* If the deflections are small (x/z <zl,e -x/z),

the probability density for deflection e is

PO(e) = pz W (pze) (4)

where pz is the z component of atomic momentum.

.

.
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To obtain the transverse momentum density W(p), we solve the

Schr6dinger equation in the momentum representation. We start by

writing down the general equations of motion, and then simplify

these by using the two-level-atom and rotating-wave approximations.

The unperturbed Hamiltonian, H“ = Px2/2M + HO, has eigenvectors

In,pz = lnslp> and eigenvalues Cn(p) = p2/2M + En, where [n> and En

are the eigenvectors and eigenvalues of HO, and Ip> is the eigenvector

of Px with eigenvalue p. An arbitrary state vector is expanded as

(5)

n

where On(p) is the amplitude for momentum p and internal energy En.

Upon substituting this expansion into the Schrodinger equation,

i*al*>/at = HIYZ , and using the orthonormality of the basis states

In,ps, we obtain the equations of motion

a~n(p)
ili at =

xl
dp’<n,plHlm,p”>$m(p”). (6)

m

Evaluation of the matrix elements <n,plHlm,p”>, using Equations (2) and

(3), is straight forward. The explicit equations of motion are

wn(p)
iii at = =n(P)$n(P)

(7)

- c~s +gnm[,rn(p-+k) + $m(P +*HI
m

where gnm = (8~1/c)’/2<n1~.;lm>. Equation (7) shows that a change of
.

the excitation state of the

+ +Ik. Note that gnn = O if

transformation

atom is accompanied by a transfer of momentum

the atomic levels are nondegenerate. The



$n(p) = Cn(p) exp {-i En(p)th}s

with Cn(p) = p2/2M + E~~ puts Equation (7) in the form

aCn(p)
iii at =

[
X Cm(p-+k)

I- Cos tot gnm

m

exp
{[

- i LOmn+ d - 1}!&

1 H
+Cm(p+~k)exp {-i[wmn+ts+~ t

22

(8)

(9)

where Onm = (E - Em)fi, d =~W2/2MC2, and the amplitudes Cn(p) are
n

now slowly varying functions of time (interaction picture).

If an atom, initially at rest, absorbs a photon of energy %M and

momentum%/c, the internal energy of the atom increases by the

amount~umn, its kinetic energy increases by the amount (i!iu/c)2/2M=-~d,

and conservation of energy, fim ‘%wmn +lid, shows that the resonant

frequency of the transition is w = Wmn + 6. Thus 6 is a frequency

shift associated with recoil of the atom. The quantities f up/Me are

Doppler shifts due to motion of the atom in the x direction. If the

interaction time is sufficiently short, then both recoil and Doppler

shifts can be neglected. The condition that wpt/Mc << 1 has the simple

physical meaning that the frequency width associated with the finite

transit time of the atom across the field (transit time broadening)

is large compared to the accumulated Doppler shift. We make this

assumption of short interaction ti’mein the following analysis, and

discard exponential factors of the from exp~-i(d fmp/Mc)t] in Eq. (9).

We shall consider the case where the applied field is resonant with

only a single atom transition (U = Umn, m = +, n = -). Then if we

neglect all but the two amplitudes C+(p) involved in the transition

(two-level atom approximation)12, expand cos t in exponential and

.

.
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where Q =

that a is
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terms on the right in Equation (9) that vary slowly with time

12wave approximation) , Equations (9) reduce to

L+(P) = (i~/2)[C-(p-*k) +c-(p+~k)l
(lo)

L(P) = (io/2)[C+(p - _hk) + C+(p + *k)]

(8TTI/Ck2)’/2<- 11.’2[+>. The phases of It> are chosen so

real.

Equations (10) may be solved exactly. The transformation

D+(P) = [C+(P) + C-(p)]/21/2
(11)

D-(p) = [C+(p) - L-(P)l/21’2

decouples Equations (10) as

~+(p) = (i~/2)[D+(p -~k) + D+(P +~k)l

L(P) = - (i~/2)[D-(p-%k) + D-(p +%k)].

Upon substituting the trial solution

D+(P) = exp {isp f iat}

into Equations (12), we obtain the dispersion relation

(12)

(13)

a(s) = Q COS (tiks) (14)

for waves in momentum space. Physically acceptable solutions are

obtained for all real values of s. The general solution of Equations

(12) is a superposition of waves
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m

D+(p~t) ‘&/ak(s) ew {isp * i~(s)tl ds” (15)—
-m

At t = O, Equation (15) reduces to a Fourier transform relation between

at(s) and D:(p) = D+(p,o). When the inverse of this transform, namely

is substituted into Equation (15), we obtain

D+(W) ‘f G+(P- p;t)D~(p”) dpg—
-co

where

co

JG+(P,~) ‘+-m exp {*iu(s)t + ips} ds.

(16)

(17)

(18)

With the help of the dispersion relation, Equation (14), and the

identity

the propagators G+(p,t) are readily evaluated as series of Bessel functions

m

Gi(p,t) ‘~ (*i)n Jn(ot)6 (p- nik)
n=-m

(19)

and the general solution, Equation (17), becomes

w

Df(p~t) ‘~(fi)n Jn(@)D~(p - nik). (20)
n=.C9

Consider the case where the atom is in the lower state and has

momentum p = O at t = O. In this case, C:(p) = O, C:(p) = [6(P)11’2,

1/2 (the square root of the 6-and from Equations (11), D: = [~(P)/2]

function is used here so that the probability that the atom is in the

ground state, namely P!!=
I

lC~(P)12dP, is properly normalized to unity).
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It follows from Equations (11) and (20) that the momentum probability

density, W(p) = IC+f+!c-lz = ]D+12+I D-12, has the form

‘2
W(p,t) ‘~ Jn(~t)6(p - nik). (21)

n=-~

Equation (21) states that the probability Pn(t) that the atom has

%acquired momentum n k (n = O, fl, t2, “.=) is

Pn(t) = J@). (22)

In cases of practical interest, ~t is a large number. For lnlf~t,

the probability J~(nt) is not

increase with Inl and has max.

decreases rapidly to zero as

the maximum deflection is emax

a monotonic function of n, but tends to

ma near Inl = Qt. For lnl>ot, J:(W)

nl increases. In view of Equation (4),

= %k~t/pz. This result shows quite clearly

that momentum is transfered to the atom at the induced rate ~.

The mean magnitude of momentum transfered to the atom

<1P]> ‘~~klnlJ~(~t)
n.-m

can be expressed in closed form
13

<Ipl> =lil((nt)2[J:(W) + Jf(ix) 1

(23)

- %knt J (Qt) J1(Qt)
o

(24)

and approaches the value zlpl> = 2~knt/n = 0.64*knt as nt +~. The RMS

2 1/2 =
momentum, at any time t, is given by the simple formula [<p >]

*l@t/n = o.71*kme’4 Thus the spread of momentum increases linearly

with time.
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In the above example, we assumed that the incident atomic beam

has sharp momentum p = O, i.e. the incident beam is a plane wave, and

hence has infinite transverse extension. For a finite collimated beam

of width Ax, the initial spread of momentum is Ap - +/ Ax, and the ratio

of this spread to the momentum delivered by a single photon is

Ap/tik- ~/27rAx. It follows that there is little or no overlap of the

terms in Equation (20) when AX is large compared to the optical wave-

length, and the probability density for momentum becomes

~(p>t) =jjf(nt) W“(p Ii-nk)
n=-m

(25)

where WO(p) is the initial momentum density. The pattern of deflections,

in this case, is the same in all essential details as that discussed

above.

If the atomic beam diverges with half-angle of say e = 10-3 rad,

and has a typical thermal velocity uz - 5 x 104cm/see, then the initial

spread of transverse momentum is not small compared with~k, and it is

expected that interference due to overlap of the terms in Equation (20)

will effect the probability density W(p,t). It turns out, however, that,

due to a rapidly varying phase factor associated with divergence of the

beam, the scale of such interference is small compared to Ap =~k, and

therefore is almost certainly unobservable. We do not present this

calculation because the smoothed distribution is the same as Equation (25).

It is interesting to note that Equation (21) is formally identical

to the equation for Fraunhofer diffraction of a plane wave by a sinusoidal

phase grating.
15

In effect, the atomic beam is diffracted by the periodic

amplitude (E(x) = cos kx) of the standing wave, and the deflection angles,
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en = nik/pz, are precisely what one would expect on the basis of the

optical analogy, if the atomic beam is regarded as a wave of wavelength

equal to the deBroglie wavelength, Aa = h/pz.

III. NUMERICAL EXAMPLE

Our theory is based on the approximation that recoil and Doppler

~ 2/2Mc2 and ~ Wp/MC respectively, are negligible.frequency shifts, 6 = w

Accordingly, exponential factors of the form exp {-i[6fwp/Mc]tl were

replaced by unity in Equation (9). This approximation is valid when

(6 + wlpl/Mc)t << 1. The recoil shift is half the Doppler shift when

lpi = *k. Since we are only interested in cases where lpl >> %k, the

above condition becomes ulplt/Mc f< 1. Replacing Ipl by the RMS value

‘2 1 2 =~@t/fic derived above, we obtain a constraint on the[<p >] 1

interaction time

t < [2’/2Mc2/%u2#2. (26) ‘

The maximum interaction time permitted by Equation (26), tmax, determines

the thickness of the interaction region, L = Uz tmax, and the number of

absorption-emission processes experienced by the atom, n = ntmax. If the

atoms issue from an oven at temperature T, pz = m and uz = -

(here k is Boltzmann’s constant). The RMS deflection is

6RMS = liwQtmax/2’/2cpz

= fia/23/2kT]1/2 (27)
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Consider a mildly refractory, moderately massive atom with a strong

visible absorption, Let

T= 1000 K

M= 1.6x 10-22g

v<= -1~~~1 + s = 4 Debye

u = 3 x 1015 s-l

Then, for I = 2.5 x 106 watt/cm2 in the interaction region, we calculate

n = 3500

t = 6.2 X
max

L = 2.6x

‘RMS
= 3.9x

()-9 s

0-4 cm

0-2 rad = 2.20

Thus a two degree deflection is obtained for our “typical” atom in a

field of 2.5 x 106 watt/cm2. The interaction time required for this

deflection is less than the natural lifetime of the transition

(T:5X10-8 S). To achieve the corresponding 2.6 micron beam thickness

requires focusing a 2.6 mm diameter laser beam in one dimension by a

factor of 103. Thus, for an unfocused laser intensity of 2.5 kw/cm2, a

total laser power of about 130 watts is required.
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Theory of Atomic Motion in a

Resonant Electromagnetic Wave

R. J. Cook
University of California

Lawrence Livermore Laboratory
P. o. BOX808

Livermore, California 94550

ABSTRACT

A new theory of atomic motion in a resonant standing or traveling

electromagnetic wave is presented. It is shown that, when effects of

spontaneous emission are negligible, the motion of a two-level atom in

the resonant radiation is determined by two noninterfering wave functions,
..

each of which satisfies a time-dependent Schrodinger equation with time-

independent potential energy. An experiment is proposed to test the theory.

.
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There has been renewed interest in recent years in the theory of

atomic motion in resonant and near resonant electromagnetic waves. This

interest was initiated by the development of high-power tunable lasers,

and interest has continued because of possible application of the theory

to problems of laser

17-20
cooling , neutral

2,5,11
spectroscopy .

4,10,16isotope separation , atomic trapping and

21,22
atom acceleration , and atomic beam deflection

An atom illuminated by resonant radiation experiences at least two

types of radiation force: a force associated with spontaneous emission,

and a force due to interaction of the induced atomic dipole moment with

the amplitude gradient of the applied field. The radiation-pressure

associated with spontaneous emission has been extensively investigated

both theoretically
17,19 2,3,10

and experirnentally , and will not be dis-

cussed in this letter. A theory of the induced-dipole force has been

developed by Ashkin for the case where the atomic response may be des-

cribed by a polarizability19, and a certain off-resonance focussing effect

associated with this

A description of the

involves spontaneous

force has recently been detected experimentally23.

atomic response in terms of a polarizability also

emission to the extent that it is spontaneous decay

that causes atomic relaxation to the near steady-state condition des-

cribed by a polarizability. If the atom-field interaction is brief

(less than a natural 1ifetime), a theory based on the steady-state polar-

izability is no longer

tion must be solved to

effects of spontaneous

..
appropriate, and, in general, Schrodinger’s equa-

determine the atomic response. In this case,

emission are negligible.
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The purpose of this letter is (1) to present a new theory of atomic

motion in a resonant electromagnetic wave, applicable when effects of

spontaneous emission are negligible, and (2) to propose an experimental

test of the new theory.

The Hamiltonian for an atom in a classically prescribed

magnetic field , in the dipole approximation, takes the form

H = P2/2M+ Ho - y~(~,t),

where P2/2M is the kinetic energy associated with the cenl

momentum P_, HO is the Hamiltonian for the internal motion

& is the dipole moment operator, and E(R,t) is the electr—.

at the

atom w“

E(x,t)——

time-independent wave

electro-

(1)

er-of-mass

of the atom,

c field evaluated

on of a two-levelcenter-of-mass position !l_.Consider first the mot

th energy leve”s El and E2 in a monochromatic standing wave

= &(x) Coswt. Here the amplitude E(A) will be a solution of the—

equation V2E + (W/C)2E = O, but is otherwise arbitrary.

Let $1 (5) and V2(X_)be the amplitudes that the atom is located at position

x and occupies energy levels El and E2 respectively” Then it follows from

Eq. (1) that the Schrodinger equation for the two-component wave function

is

a!1 42
iAl==-~v2v, ‘El’+-

llEOJ) Cosut +2,

a4’2 # 2
ltf~= ‘~ v 42 + E2V2 - p~(~) cos~t 41s

(2)

●

.

.
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where v = <1 l~=;12>is the transition dipole moment. In the case of exact.—

resonance, w = (E2 - E1)H, the substitution 41 = Cl exp{-i E1t/4f},42 =

C2 exp{-iE2 t/.+i\and a rotating wave approximation, i.e., neglect of

inessential terms that oscillate at twice the optical frequency, put

Eqs. (2) in the form

(3)

aC2 *2 .2
i+l~= -mvc2-; lJE(~)c,.

Equations (3) are decoupled by the unitary transformation

‘+ = r% (c, - C2),

(4)

Li- = 2-Z (c, +C2).

The equations of motion for u+(x) are-—

(5)

and the probability density for the position of the atom, P(x) =—

10,(1)12 + lV2(~)12, becomes

P(A)= IU+(I) 12+ IU-(X)12. (6)—

Equations (5) state that the wave functions u+ propagate independent

of one another, and Eq. (6) shows that there is no spatial interference
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between these waves. An atom initially in the ground state (C2 = o) has

equal probability to be in one or the other of the waves u+, and Eqs. (5)

imply that these probabilities are time-independent. The waves U* each

satisfy a simple time-dependent Schr6dinger equation, but with potential

energies V*(x_) = ~ $M5(~)

on atoms in the two waves

the amplitude gradient of

of opposite sign. Therefore the forces acting

are in opposite directions, and it follows that

the resonant radiation will split a narrow

atomic beam into two components, in much the same way as the magnetic

field gradient splits an atomic beam in the Stern-Gerlach experiment.

Equations (5) and (6) are consistent with the theory of Kazantsev that

predicts splitting of an atomic trajectory upon crossing a sharp boundary

between vacuum and resonant fieldg.

If N atomic levels take part in the resonantinteract

similar to the above shows that the motion of the atom is

N independent noninterfering wave functions Un. The wave

on, an aria’

determined

function Ui

satisfies a time-dependent Schrodinger equation with potential energy

ysis

b.y

Vn(x) = ~vn~(~)swhere I.In is the nth eigenvalue of the matrix of transition

dipole moments connecting the N levels. The probability density for the

position of the atom is P(x_)= ~n lun(~)12, and the probability that the

atom occupies the wave Un, for an atom initially in the ground state, is

the absolute square of the first element of the nth eigenvector of the

dipole moment matrix.

If instead of the standing wave ;(;,t) = ; E(?) cos wt we consider

●

✎

a general monochromatic field

+-+
E(x,t) = eE(;) COS {6(;) + d},

.

(7)
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the Schrodinger equation for the motion of a two-level atom becomes

wl
i~—= 22

at
--~VV1+EIV1 - PE(i) CO’S {6(~) + ~t}$z,

a~2 ~* *.
—=-~v42+E2$2-

‘“fiat IJE(~) COS {d~) + wt}$,.

Let

v,(1) = D1(~) exp {-i Elt/ti + ~ i[A,t + e(i)]} ,

$* (i) = D2(~) exp {-iE2t/11 -~i[At + e(~)]] ,

where A = w - ~ is the detuning, and u = (E2 - E1)/ti. Upono 0

substituting (9) into (8), we get

aD1 %2
i%== -~(V+$e)2Dl+; fiAD1

- IJECOS {6 + mt} D2e-i(O + ot)
s

aD2 %2 .
ifir= -m(v -#e) 2 D2 -~-ti AD2

- pEcos {e + ot} D1ei(e + ~t)
.

(8)

(9)

(lo)

These are exact. Now expand cos {e + wt.} in exponential and keep

only slowly varying terms on the right in (10), to obtain

aD1
ihr=-

“%2 “
~ (v + *e)* D, +~-hAD1 -~vEC12 ,

aD2 X2
(11)

iFi~=—— 2“ (v - ~e)2 D2 - ~ tiAD2 -~D1 .
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As an example, consider the collimated Gaussian beam

++
E(x,t) = ;Eo exp {- (X2 + Z2)/f}Cos {KY ‘wt~ ●

(12)

Here we have E(;) =EO exp {- (X2+ z2)/W~} and e(~) = - Ky, and so

(11) becomes

aD1 %2 aD1
ifi~= -~(v2D1-iK~- ; K*D1)

+ ~tiAD, - ~PE(i)D2 ,

aD2 aD2
-$(v2D2+ iK—-itl~= ay

; K2D2)

- ~iIAD2 - ~vE(i)D1 .

(13)

TO get rid of the trivial terms in K! let D, = Cl exp {- i?iK2t/8M}

and D2 = C2 exp {- i?iK2t/8M}. Then

aC,
*2

‘w=
- #c, - &E(~)C2 - +fi[fi(- ih $) - AIC, (14)

aC2 -n*
ifi~= . ~v2C2 - @~)C1 +;%[;(- th $) - A1C2 (15)

The last terms in (14) and (15) contain factors which in the momentum

representation take the form
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Here KPy/M = Kv
Y

= Wvy/c is the Doppler shift associated with the

velocity Vy in the traveling wave (12). If the atomic beam is well

collimated (sharp Py) the Doppler term can always be canceled by an

appropriate detuning A, and for this detuning the final terms in (14)

and (15) may be neglected.

On the other hand, if Cl(i) and C2(;) are initially independent

of y (as in the following example), then they will, according to

(14) and (15), remain independent ofy for all time, and so, for

A= O, Eqs. (14) and (15) have solutions satisfying the standing-wave

equations (3).

The theory may be tested as follows. Consider a well collimated

atomic beam of ground-state two-level atoms that propagates in the z

direction and intersects a collimated Gaussian optical beam E(x) =

EO exp{-(x2 + z2)/W~} propagating in the y direction. The resonant

radiation acts as a cylindrical lens that tends to focus atoms in the

wave u- and defocus atoms in the wave u+, as illustrated in figures 3

and 4 respectively. In crossing the Gaussian beam, the initial plane

waves u+ = expfikz - iut t acquire phase factors exp { T io(x)~, where

o(x) = fiWO ~EO exp{-x2/W~t/2fi~z, and subsequently propagate as free-

particle wave functions. Let g = x/WO , s = z/fO, and m = ~ WoPEo/2~z,

where Uz is the atomic velocity, fO=2WOE/ fipEO (S = ~ Mu:) is the “focal

length” of the Gaussian lens, and m is a dimensionless measure of the

strength of the resonant field. Then the waves u+ on the down-stream side—

of the radiation (neglecting inessential phase factors) are given by

00

Ut(t,s) = (m/~s)%Jexp{im[s-l (t-$) 2TexP(-@l~io (16)
--
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Equation (16) is the result of a Fresnel approximation and is valid when

atomic deflections are small. To the same approximation, the atomic flux

associated with u+ is J+ (c,s) = Vz IU+ C,s)lz, the flux associated with

u- is J-(c,s) = vzlu-(g,s)lz, and the total flux is J = J+ + J_.

To be specific, consider a lW Gaussian laser beam focussed to waist

w = 50 pm. The peak intensity is then I = 2.5 x 104 W/cm* and E =o 0

[:T 10/c]%. Let the atomic beam issue from an oven at temperature

T = 1000K, and select velocity component Uz equal to l/10th of the most

probable thermal velocity. Then for “typical” atoms of mass M = 50 u =

8 X 10_23 g and transition dipole moment P = 1 Debye, the focal length
.-.

of the radiation lens is f. = 0.8 cm, and m = 7.2 x 103.

The atomic fluxes J-(:) and J+(L) in the focal plane (s = 1) are

plotted in figures 5

is the sharp peak at

radiation lens. The

and 6 respectively. The dominant feature ofJ-(C)

c = o. This is the primary focal line of the

flux J+(g) shows two peaks, formed by atomic trajec-

tories that are repelled by the resonant field. The total flux J = J+ + J-,

figure7, shows quite clearly the effects of both focussing and defocusing

of atomic trajectories. As s increases beyond s = 1, the peaks of J+(t)

become sharper and form two secondary focal lines in the plane s= 2.3 at

t =*1.8. These focal lines are a result of focussing by the wings of

the negative Gaussian radiation lens. As s varies from 1 to 2.3 the central

focal line of J-(g) spreads into a band of width AE = 1.0. The focal lines

of J+(g) lie well outside of this band. The structure of the atomic flux

would be well resolved by a detector of resolution AX = 10 um.
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A direct measurement of the splitting of an atomic beam by the

amplitude gradient of

placing a narrow slit

illustrated in figure

the resonant field may be accomplished by

immediately upstream of the interaction region, as

8. The maximum splitting occurs when the center

of the slit is off-axis by

example, has the value e =

the amount 6 = WO/&!, and, in the above

0.31°. For a slit width of 20 ~m, the

divergence of each of the deflected components is less than 0.03°

The present theory is valid when effects of spontaneous emission

are negligible, i.e., when the interaction time is less than the natural

lifetime of the atoms (At = 2W0/uz < Tn). In the above example, this

condition obtains when the resonant frequency is less than 2.5 x 1015Hz

or ~ 2 0.7 m. This constraint may be relaxed somewhat by decreasing P,

M and/orW
o“

A measurement of the total atomic flux in the focal plane (s = 1)

showing the triple-peaked structure of J(g), or a direct measurement of

the splitting of an atomic beam by the amplitude gradient of the

resonant field, would provide a convincing test of the present two-

component theory.

.

.
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Chapter 4

DIFFRACTION OF ATOMS AND MOLECULES BY

A RESONANT STANDING LIGHT WAVE
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Diffraction of Atoms and Molecules by a Resonant Standing Light Wave

.

.

R. J. Cook

University of California
Lawrence Livermore Laboratory

P.O. BOX 5508
Livermore, California 94550

Abstract

Diffraction of atoms and molecules by a strong resonant standing

electromagnetic wave is investigated theoretically. Previous work is

here generalized to include the case in which several atomic or molecular

energy levels interact strongly with the resonant radiation. It is shown

that, when effects of spontaneous emission are negligible and the

radiation is tuned to exact resonance, the motion of the atom or molecule

is determined by a set of independent -noninterfering eigenwaves, each of

which satisfies a time-dependent Schr6dinger equation with

time-independent potential energy. The structure of the eigenwaves and

associated potential energies is investigated for (1) a two-level atom,

(2) a two-level atom with degenerate upper level, (3) a truncated

harmonic oscillator, and (4) an ideal simple harmonic oscillator. An

equation describing propagation of a paraxial atomic or molecular beam in

a resonant standing wave is derived, and an exact solution is given in

terms of Mathieu functions. The physical significance of this solution

is discussed in connection with the Raman-Nath equation, and it is

pointed out that the problem of diffraction of atoms or molecules by a

resonant standing light wave is formally analogus to the problem of

diffraction of light by ultrasound.
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1. INTRODUCTION

In a recent lette~4 (hereafter referred to as I) it was shown that,

when effects of spontaneous emission are negligible, the motion of a

two-level atom in a resonant standing electromagnetic wave is determined

by two independent noninterfering wave functions, u+(;) and u-(;),

each of which satisfies a time-dependent Schrodinger equation but with

potential energies V+(l) = * ~ ~E(x) of opposite sign (here ~ is the

transition dipole moment between the two levels and E(;) is the amplitude

of the standing wave). Initially, when the atom is in its ground state,

the two waves Ut(;) are identical, but because the potential gradients

acting on the waves are in opposite directions a small atomic wave packet

is split by the resonant radiation. An experiment designed to detect

this splitting in laser radiation was proposed in I. Similar theoretical

results and observations in the microwave region have been reported by

~azantsev25
Hill and Gallaghe#6,

27
3 and Bloom et. al.

In a related work by Cook and Bernhardt28 (hereafter referred to as

II) diffraction of a beam of two-level atoms by a resonant standing wave

was investigated in the limit of short atom-field interaction time. It

was found, in this limit, that the probability Pn that the atom squires

transverse momentum ni~/c (the momentum of n photons) while moving

parallel to the fringes of a plane standing wave is given by the relation

Pn(t) = J2(~t), where Jn is the Bessel function of order n, Q is

the Rabi flopping frequency of the two-level atom, and t is the

interaction time.
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The purpose of the
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present paper is to generalize the above work in

two directions. First, the theory of atomic motion in a resonant

standing wave is extended to include the case in which more than two

atomic (or molecular) energy levels interact strongly with the resonant

radiation, and second, the constraint

time in 11 is removed by showing that

diffraction problem can be written in

of short

an exact

terms of

atom-field interaction

solution to the

Mathieu functions. The

intent of this generalization is to provide a theory of sufficient

generality to make possible more realistic comparison with experiment.

In the following we shall use the term “atom” to refer to either an atom

or a molecule.

In the model considered here the internal and translational motions

of the atom are treated quantum-mechanically while the field is treated

classically. Our theory treats only the case of exact resonance, and

spontaneous emission is ignored. Thus the present theory is expected to

give a valid description of atomic motion in a strong resonant standing

wave for interaction time less than the shortest natural lifetime of the

several interacting levels.

In the following section the basic theory of atomic motion in a

resonant standing wave is developed. It is shown that, if N levels take

part in the resonant interaction, the motion of the atom is determined by

N independent noninterfering “eigenwaves”, each of which satisfies a

simple one-component Schrodinger equation with time-independent potential

energy. ‘ In Section 111 the structure of the eigenwaves and associated
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eigenwaves and associated potential energies is studied for four cases

likely to be encountered in practice: (1) a two-level atom, (2) a

two-level atom with degenerate upper level, (3) a truncated harmonic

oscillator, and (4) an ideal simple harmonic oscillator. Section IV

contains a derivation of the differential equation describing propagation

of a paraxial atomic beam in a resonant standing wave, and an exact

solution to this equation is derived and discussed in Section V.

II. BASIC THEORY

As in previous work (I and II) we start with the Hamiltonian for an

atom in a classically prescribed electromagnetic field in the electric

dipole approximation,

H= P2/2M + Ho -;”~(ii,t) (1)

where P2/2M is the kinetic energy associated with the center-of-mass

momentum ~, Ho is the Hamiltonian for the internal motion of the

unperturbed aton, ~ is the electric dipole moment operator, and ~(~,t) is

the electric field evaluated at the center-of-mass position ~. We

consider the motion of an atom in a monochromatic standing wave

(2)

where S is a unit polarization vector independent of position and time.
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In the position representation for the center-of-mass motion and the

energy representation for the internal motion, the basis states are

In,;,= ln>l~~, where In > is an eigenvector of Ho (Holn > = E In>),
n

and l;>is an eigenvector of the center-of-mass position operatorh with

eigenvalue I (11~>= 111>). An arbitrary state vector is expanded as

(3)

where cn(~ is the amplitude for position ; and internal energy En.

Inserting this expansion into the Schrodinger equation, ih31@/~t = HIV>,

making use of the orthonormality of the basis states ln,~z, and

evaluating the matrix elements of the Hamiltonian, Equation (l), with

;(~,t) taken from Equation (2), we obtain the equations of motion

acn(i) .%22
i% — -Xv Cn(;)

at

(4)

where ~nm = <nl~.~lm>and Unm = (E
n - Em)n.

The following calculation is limited to the case in which the applied

field frequency m is equal to one of the resonant frequencies of the

atom. In general several atomic transitions are simultaneously in

resonance with the applied field. This occurs, for example, when the

field induces transitions between two energy levels each of which is
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degenerate, or when the atom (molecule) is an harmonic oscillator, in

which case the entire ladder of transitions is in resonance with the field.

The states n and m strongly affected by the field are those that satisfy

Iunml = m.

Next a rotating wave approximation is introduced by expanding cos (d)

in exponential and keeping only terms on the right in Equation (4) that

vary slowly with time. The result is

(5)

where ;nm = Unm for IUnml = w, and ;nm = O otherwise. The

indesies n and m in Equations (5) range over the entire set of atomic

states. It is convenient to partition this set into (1) the set of N

states that interact with the field (essential states), and (2) the

remaining set of states that do not interact with the field (unessential

states). With a rearrangement of state lables, the amplitudes Cn(;)

for essential states satisfy Equations (5) with n andm running from 1 to

N, and tinmbecomes an N x N matrix. The amplitudes for inessential

states satisfy free particle Schrodinger equations, ilIacn/at=

- (%2/2M)v2cn. We shall assume that the atom starts out in its

ground state, and that the ground state is an essential state. In this .

case, the unessential states may be ignored.
.
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The coupled set of differential equations for essential states,

Equations (5), is decoupled by a unitary transformation. Let

Cn(i)‘k$lunkuk(;)
where Unk is the unitary matrix that diagonalizes ;nm,

(6)

(7)

Vn are the eigenvalues of ;nm. Upon substituting (6) into (5),

matrix multiplying

(7), we obtain the

sun(i)
i% at

the result on the left byll~~ = U~n,and using Equation

decoupled equations

.*22+
-~v Un(x) (8)- ;UnE(i)Un(i).

Equation (8) indicates that the “eigenwave” Un(;) satisfies a single-

component Schrodinger equation with potential energy Vn(z) = - &nE(i).

The various eigenwaves propagate independently under the influence of

their respective potential energies, and it follows from (6) that the

probability density for the position of the atom, P(;) = Znlcn(~)12 =

znlun(~) 12, is the sum of the densities lun(~)12 for each of the

eigenwaves, i.e. there is no interference between different eigenwaves.

From the inverse of Equation (6),

&u c (1)@=N t
.nkk (9)
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we find that if the atom is initially in itS ground state (ck(;,o) = O

for k> 1), then

Un(i,o) = U;n c, (1,0), (lo)

.

and the probability Wn that the atom occupies the nth eigenwave is

Wn =$ d3xlun(;,o)12 ❑ lU1n12. (11)

These probabilities are independent of time.

The theory may be illustrated by considering a narrow beam of atoms

that traverses a section of standing wave in which VE is transverse to

the beam.
29

According to Ehrenfest’s theorem , atoms in the nth

eigenwave experience a deflecting force ;n = - <Vvn>=;vn <VE >

proportional to Pn, and hence, the atomic beam is split into as many

components as there are distinct eigenvalues Un. If the eigenvalues

Vn are nondegenerate, this technique may be used to separate the

different eigenwaves, in much the same way as different angular momentum

states are separated in the Stern-Gerlach experiment.

III. SPECIFIC EXAMPLES

In this section the above theory is applied to four specific cases

likely to be encountered in practice, and for which diagonalization of;nm

has been found to be analytically tractable.

.

.
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A. Simple

For an

two-level aton

appropriate choice of the phases of In> , the dipole moment

matrix takes the form

%

[1

011
Unm = 9 (12)

Uo

where ~ is a real number. The unitary matrix that diagonalizes (12) is

u [1=2-1/2 1 1
nm 1-1’ (13)

and the eigenvalues are U1 = P, !-12= -u. The eigenwaves are related to

the amplitudes cl(;) and C2(;) of the two-level atom by the equations

u,(;) = 2Jqc,(;) +C2(W9

-“2[C,(I) - C2G)LU*(X) = 2

and these

v,(;) = -

eigenwaves propagate independently with potential energies

;P E(;) and V2(;) = ;P E(;) respectively. A two-level

(14)

atom initially in its ground state has equal probability to be in either

of the two eigenwaves (W1 = W2 = 1/2), and since the eigenvalues~l~

~2 are distinct, a narrow beam of two-level atoms splits into two beams

when it encounters the amplitude gradient of a standing wave, i.e. a

standing wave acts as a birefringent medium for two-level atoms. This

simple case was treated previously in I.
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B. Two-level atom with degenerate upper level

Consider a two-level atom with nondegenerate ground state (amplitude

cl(;)) and a degenerate upper level consisting of N - 1 states

(amplitudes Cn(;), n = 2, .... N). Let~nl be the transition dipole

moment

dipole

between the ground state and the upper state of index n. The

moment matrix takes the form

%

’21
0 0 ““” o

% %
p3, o 0 ““” o

‘rim= ● ** .
1... ●

L%*
with ~ln = pnl . Letvm be an eigenvector

eigenvalue P. The eigenvalue equation, Zm

solutions of these equations with v, = O, B = O

for n = 1, and

f-b

‘nl “1 = ‘“n

fern >1. There exist

(15)

of~nm with

%
‘nm ‘m = Pvn, becomes

(16)

(17)

and Zm ~~1 Vm = O. If ;Ml (m= 2, .... N) are regarded as the

components of a vector in N - 1 dimensions, the last equation states that

vm(m = 2, .... N) is a vector orthogonal to;ml. In N - 1 dimensions
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9

.

there are N - 2 such vectors, and hence, there are N - 2 eigenvectors of

%
~nm with VI = O and ~ = O. Now the mth column of the unitary matrix

unm that diagonalizes ~nm is the eigenvect.or of ~nm with eigenvalue
Thus Equation (9) states that Un(;) is the inner product of the

‘m”

nth eigenvector of ~nm with cm(x), and (11) tells us that the

probability Wn is the absolute square of the first component of the nth

eigenvector of ~nm. Because each of the N - 2 eigenvectors we have

been considering has zero first conponent (VI = 0), the probability is

zero that any of the eigenwaves associated with these eigenvectors is

occupied.

The remaining two eigenvectors of ~nm, or columns of Unm, are

obtained by solving Equations (16) and (17) with B # O. Upon solving

(17) forvn,

and insert , we get the eigenva’

‘n =%nl Vllu,

ng this into (16) ues

(19)

o is the r.m.s. of the transition dipole moments between ground and

1/2

‘ml I21.-F-J

(18)

excited states. The components of the two eigenvectors are obtained from

(18) by normalization. The result is v; = 21/2,v~ = ~ Z1/2~n1/a (n = 2,

.... N). Finally, the inner product of these vectors with cm(~) gives

a formula for the occupied eigenwaves,
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(20)

The atom occupies these eigenwaves with probabilities W+ = IV;12 = l/2 .

c. Truncated harmonic oscillator

The interaction of resonant radiaton with the vibrational levels of a

molecule may be approximated by treating the molecule as an N - level

system (n = 1, 2, .... N) with En =llu(n - 1/2) and transition dipole

moments equal to those of a sinple harmonic oscillator,

%
= P[+mn+l,m , 1.+mlnn-l m

%m
(21)

Here ~ is the moment for the n = 1 to n = 2 transition. Truncation of

simple harmonic oscillator levels for n > N takes into account, in an

approximate way,

molecules do not

It was shown

of (21) are urn=

the fact that higher vibrational levels in real

interact with the applied field due to anharmonicity.

by Biatynicka-Birula et.al~” that the eigenvalues

~1/2
L p~m,~here AM are the roots of the i~th~-!ermite

polynomial HN(x), and that the eigenvector associated with PM has

components

rN12N-11 Hn ,(~m)
Vn {PM)=

~ lNHN~;km) - ●

(22)
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It then follows from the arguments of the preceding subsection that the

mth eigenwave is

urn(;)= ! Vn(pm)cn(i),
m=1

and the probability that the molecule occupies the

Wm= Ivl(um)lzo The eigenvalues urn are distinct.

mth eigenwave

Therefore the

(23)

is

amplitude gradient of a standing wave splits a narrow beam of truncated

harmonic oscillators into N distinct components.

D. Harmonic oscillator

As a final example consider a molecule whose internal motion is that

of an ideal simple harmonic oscillator of effective mass m, effective

charge e, and frequency W. For an ideal harmonic oscillator all of the

energy levels are essential, and the matrix finmof transition d

moments between essential states is the canplete matrix of dipo”
.

moments. Let q be the component of the oscillator amplitude in

pole

e

the

direction ;of the applied electric field. The component of the dipole

moment in this direction is ~ = e~, and this operator is manifestly

diagonal in the q-representation. Therefore the eigenvectors of ~ are

the eigenvectors Iq > of ~, and the eigenvalues p = eq assume all real

values. The eigenvectors of ~ in the energy reprepresentation have

components vn(q) = cnlq>, where In> (n=O, 1, 2, ...) are the
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energy eigenstates of the oscillator. As usual, the eigenwaves (here

labeled by the continuous index q) are determined by vn(q) through the

relation

U(q,i) = z V;(q)cn(i),
n

(24)

and the probability (here a density) that the molecule occupies the

eigenwave of eigenvalue P = eq is the absolute square of the first

component of vn(q), namely, W(q) = IVo(q)lz = 1< q10 >12. From the

known form of the ground state wave function of an harmonic oscillator,

we find that W(q) = (mw/~fi)l/2 exp {- mwq2/fi}, and the associated

probability density for eigenvalues p = eq is

W(P) = (21V.1~)-1/2exp {- I-12/21J~}, (25)

1

where P.
7

= e(li/Z!n~) is the transition dipole moment between oscillator

states n =Oandn=l. The eigenwave u(q,;) moves in potential energy

V(q,i) = -~ eqE(;).

The above results indicate that a narrow beam of ideal

harmonic-oscillator molecules is not split into a discrete set of beams

by the amplitude gradient of the standing wave, but rather, the beam

experiences a gaussian spreading owing to the continuous distribution of

eigenvalues ~ and the gaussian occupation probability for eigenwaves

u(q,~).
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Iv. PROPAGATION OF PARAXIAL ATOMIC BEAMS

The differential equation for the eigenwave un,

has steady solutions of the form

un(i,t) = Vn(;) exp {ikz - ioot}

(26)

(27)

with%~o = (lik)2/2M. When un(~,t) is a paraxial wave propagating

in the positive z direction, Vn(~) is a slowly varying function of z.

Inserting (27) into (26), we obtain

(28)

On the assumption that$n is a slowly varying function of z, we may

discard the small term - a2$~z2 on the right in (28) which is negligible

compared to the term containing a+n~z~ In oPtics this is-known as a

Fresnel approximation. Equation (28) becomes

a+n

2ik~=
2 “’nE+

- vTljn- ‘F (X)vn

*

(29)

where V* = a2/8x2 + a2/ay2 is the transverse Laplacian. In vacuun (E=O)
T.

the solution of (29) is the Fresnel diffraction integral,
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*n(B’z)=* ~ex’{wl”n(’o~zo(30)

where ~ = (x,y).

Let co(~) be the ground state wave function at z = O, t = O. Then

according to (10) and (27) the initial eigenwaves are IJJn(;,O)= U~nco(~)

But, as noted above, there is no interference between different

eigenwaves, and consequently the initial phase of each eigenwave may be

shifted by a constant without effecting the result. We use this freedom

to replace U~n by its modulus in the preceding equation, and write

the initial eigenwaves as $n(~,O) = W\’zco(~)

In a typical experiment a

standing wave at z = O, exits

to large positive z where the

measuring the atomic flux J(;,

beam of ground-state atoms enters the

the wave at z = L, and propagates in vacuum

effect of the interaction is detected by

z). The atomic flux, or z component of the

probability current density, is calculated in the usual way except that

terms containing a~ntaz must be discarded to obtain a result consistent

with the Fresnel approximation. The total flux is

J(;,z) = (fik/M)n!!114n(;,z)12
=

(31)

0

Upon exiting the interaction region, the eigenwaves4n(~,L) may be

transformed to the transverse momentum representation
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s

$n(~,L) =
-iP*~/tl 2 (32)(21TI)-1j $n(~,L)e d p.

Then by using the standard interpretation of the momentum representation

wave function, or by analogy with Fraunhofer diffraction theory, it is
.

readily shown that as z ~ m the atomic flux

(tik~! l~n(%k;/z,L) 12.J(;,z) =— “Z2 n=l

approaches

(33)

v. DIFFRACTION OF ATOMS BY A SIMPLE STANDING WAVE

Consider a simple standing wave of amplitude E(x,z) = 2E0 cos kox

for O <Z GL and zero otherwise, where k. = 2n/~is the propagation

constant. Atomic motion in the y direction is unaffected by the field

and may therefore be ignored. Equation (28) becomes

.

.

a+ a2*n 2MvnEo
2ik~=-~- COS kox IJn

ax li2

for Osz <L, and 2ika$n/az = -a2$n/ax2 elsewhere.

solutions of the form Yn(x,z) = g(x)f(z) with f(z) =

MpnEo
&.!Z+2(~k+ ~ COS kox)g ‘ O
dx2

(34)

Equation (34) has

exp {- i~z} and

where ~ is a separation constant. The change of variables kox = 25

yields

(35)



&l+(a- Zqn Cos Z<)g = o
dcz

where a = 8ak/k~ and qn = - 41$nEo/(liko)2. Equation (36)

31is Mathieu’s equation .

If the incident atomic wave function is a plane wave propagating
1/2

the positive z direction (co(x) = 1, Vn(x,O) =Wn ), the solution

of (34) will be an even periodic function of x. The even periodic

solutions of (36) are the Mathieu functions cer(c,qn), and the

31
associated characteristic values are a = ar(qn) . These functions
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(36)

in

form a complete orthogonal set for the expansion of even functions of

period Ag = 2~, and the solution of (34), with initial condition

On(x,o) = W;’*, can be expanded in terms of them in the usual way. The

result is

IJn(xsz) = w:’z~dn 1
cer( ~ kox,qn )e-ia;z

r=o r

21T
where an .

r k~ar(qn)/8ks and d; = n-l.focer(E,qn)dg.

(37)

(38)

Equation (37) is an exact solution to Equation (34) for O< z< L. the

solution for z > L is given by Equation (30) with Z. = L, and, in the

the limit z +-~, the atomic flux J(x,z) is obtained by evaluating

Equations (32) and (33). Thus an exact solution to the diffraction
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problem is easily written down. However, a solution in terms of Mathieu

functions is not particularly convenient for numerical evaluation nor

does it provide a clear physical picture of the scattering process.

Perhaps a better approach is to assume a solution of the form

imkox
1/2 ; Am(z)e sljn(x,z) =Wn

m=.al

with Am(0) = 6m. The mth term in (39) is the amplitude that

atom is moving with transverse momentum m%ko (the momentum of

photons) and the initial condition Am(0) = ~m indicates that

(39)

the

m

the

atom starts out with zero transverse momentum. Upon substituting (39)

into (34) we get equations for the amplitudes Am,

dAm
mzkz

~ Am .. ~ (Am-l + Am+l )●

‘~= 2k Zh2ko
(40)

The change of variab”

and a further change

where Q.n = ~n~fi, rf

es z = vzt = (lk/M)t from z to interaction time t,

of variables T = nnt to dimensionless time T,

duces Equation (40) to

dAm
am2A - ; (Am-l +A

‘x= m+l )m
(41)

where ~ = (lko)2/2M%Eo is a dimensionless parameter= The

probability that an atom in eigenwave n has squired transverse momentum
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mtiko after interacting with the radiation for time t is Pm(t) =

lAm(s2nt)12. Equation (41) applies when O< z< L or O~T~ MunE&/’h2k”

For z > L, dPm/dz = o.

Equation (41) is one form of the Raman-Nath equation. The Raman-Nath

equation has been studied extensively in connection with diffraction of

light by ultrasonic wave$z. Here we see that diffraction of atoms by a

resonant standing electromagnetic wave is formally analogus to

diffraction of light by ultrasound. This formal analogy allows us to

carry over many of the results of the theory of diffraction by ultrasound

and apply them directly to the present problem.

Probably the most significant difference between the two theories is

that diffraction of atoms by a standing wave involves simultaneous

diffraction of N atomic eigenwaves, with N = 2 as aminimun, while

diffraction of light by ultrasound involves only a single light wave.

Another difference is the value of the parameter ~. In diffraction by

ultrasound this parameter typically has a value of order 10-1 or

larger, whereas the a for atomic diffraction by a strong standing light

wave can easily be as small as 10-6.

To understand the significance of this parameter, consider the case

in which a is small compared to unity. Then initially the term am2Am

in Equation (41) may be neglected, and the substitution Am = (i)mBm

reduces (41) to the form

.
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z
= + (Bm-l - Btil).
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(42)

This is a recurrence relation for Bessel functions. The solution

satisfying initial conditions Bin(o) = 6N is Bin(T)= Jm(T). Thus

the probability that an atom in eigenwave n has squired transverse

momentum mtiko is

Pm = J:(sjt) (43)

This result was obtained previously in 11 for the case of a two-level

atom. The initial time development of Pm is illustrated in Figure 2.

The distribution of probability over m spreads approximately linearly

with time, and Pm(t) (and hence Am ) are negligibly small except for

-Otzm<Qn$.
n-

Therefore, the first term on the right in (41) is
.

indeed negligible so long as a(Qnt)2 << 1. The Bessel function

expression for Pm(t) constitutes a complete solution to the diffraction

problem when the total interaction time tL = L/vz satisfies the above

inequality for all n. The probability that the atom is deflected through

angle em= mko/k in the x-z plane is the sum of the probabilities

pm(tL), Equation (43), for each eigenwave weighted by the

probabilities Wn that the eigenwaves are occupied,

P(f3m) = ! WnJ#antL).
n=l

(44)
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However, when the probability spreads to values of m such thatamz ~ 1,

the first term in (41) can no longer be neglected, and the Bessel

function solution ceases to be valid.

It is known from general arguments based on the Raman-Nath equation,

and frcxnnumerical solutions of the Raman-Nath equation, that the effect

of the term ~m2Am in Equation (41) is to prevent spreading of

‘1/2. That is, thisprobability to values of m much larger than a

term limits the number of orders observed in the diffraction pattern. In

the present context, this effect has a simple physical interpretation.

Recall that in a standing wave of amplitude E(x) = 2EOCOS kox an atom in

the nth eigenwave has potential energy V(x) = -&nE(x) = - VnEo COS kox.

The maximum potential difference that the atom can fall through in this

potential is AV = 21JnEo,

the field can deliver to

Expressed in terms ofm,

and hence, the maximum transverse momentum that

1/2
the atom is Px= (2MAV)

1/2
= 2(MPnEo) .

this relation becomes mtiko = 2(M~nEo)
1/2 or

m= 21’2a-1’2 Therefore, the probability for diffraction into orders.

m > *1/2a-l/2 is small because this is a classically disallowed region of

momentum space. The very small value of a encountered in a strong

standing light wave, a w 10
-6

say, implies that the atom will be

deflected into very high orders of the diffraction pattern, m ~105.

The maximum deflection obtainable ise- 2(MunE~1’2 fik where !Jnis the

maximum eigenvalue for which the associated probability Wn is

nonnegligible.
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An explicit calculation of the distribution of atomc deflections em

for long interaction time (tL~ ~~1 a‘1’2) requires numerical evaluation

of the exact solution, Equations (37), (32), and (33), or numerical

solution of the Raman-Nath equation, Equation (41). The reader

interested

literature

equation32

light by u-

in persuing such calculations is referred to the extensive

on techniques for numerical solution of the Ranan-Nath

which has developed along with the theory of diffraction of

trasound.

s

.
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Chapter 5

ATOMIC MOTION IN RESONANT RADIATION:

AN APPLICATION OF EHRENFEST’S THEOREM



63

Atomic Motion in Resonant Radiation:

An Application of Ehrenfest’s Theorem

R. J. Cook
University of California

Lawrence Livermore Laboratory
P. O. Box 808

Livermore, California 94550

Abstract

A new theory of atomic motion in a resonant or near resonant

electromagnetic wave, based on Ehrenfest’s theorem and the optical Bloch

equations, is presented. The theory provides a simple unified treatment

of the radiation force including effects of spontaneous emission and

induced dipole interactions. Analytical results are presented for a

plane running wave, a general standing wave, a collimated Gaussian beam,

and a combination of standing and running waves.
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I. INTRODUCTION

The recent revival of interest in the theory of atomic motion in an

electromagnetic wave
7,19,22,33-35

and the increasing number of proposals

for the practical application of the theory
16-20

suggest that this subject

has a bright future in both pure and applied physics.

Existing theories of atomic motion in resonant radiation tend to fall

into one of two categories. There are elementary theories, based largely

on intuition and on primative concepts such as cross-section and polariz-

ability, that yield simple formulas for the radiation force under various

circumstances, and provide clear physical pictures of the processes

involved. These theories tend to be fragmented, with different arguments

being used in the derivation of different aspects of the radiation force.

For example, the radiation force associated with spontaneous emission and

the radiation force associated with interaction of the induced atomic

dipole moment with the amplitude gradient of the applied field are treated

separately, and

an atomic vapor

arguments leave

yet another argument is used in discussions of cooling of

by a standing wave tuned below resonance. Such fragmented

one with the uneasy feeling that perhaps some component of

the total radiation force has been neglected, or that an interaction

between the different effects might alter the results. On the other

hand, there are theories that approach the atom-field interaction from

first principles, with both the internal and translational motions of the

atom treated quantum-mechanically, and often including interaction with

.
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the quantized electromagnetic field to take proper account of

spontaneous emission. These theories tend to be rather cumbersome,

and often numerical calculations must be carried out to obtain

useful results.

The purpose of this paper is to present a new approach to the theory

of atomic motion in a resonant or near resonant electromagnetic wave that

may be classified approximately midway between the above two categories.

The theory, based on Ehrenfest’s theorem and the optical Both equations,

gives a unified treatment of the radiation force including effects of

spontaneous emission and the induced dipole interaction, and, at the same

time, retains much of

In the following

explicit formulas are

wave, a standing wave

the simplicity of previous elementary theories.

section the

derived for

theoryis developed. In Sec. III

the radiation force in a plane running

, a collimated Gaussian beam, and a combination of

standing and running waves. The paper concludes in Sec. IV with a summary

of results and some comments on limitations of the theory.

II. BASIC THEORY

The Hamiltonian for an atom in a classically prescribed electromagnetic

wave, in the electric dipole approximations is

H = p2/2M + Ho - ; ● ;(~,t), (1)

where P2/2M is the kinetic energy associated with the center-of-mass momentum

+
P, HO is the Hamiltonian for the internal motion of the unperturbed atom, ~
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is the electric dipole moment operator, and ;(;,t) is the electric

field evaluated at the center-of-mass position ~. In the Heisenberg

representation, the operators fiand ~ satisfy equations of motion

.

~= (ifi)-l[;,H] = VPH = ;/M (2)

; = (iM)-l[~,H] = -VRH = v(10;) (3)

respectively. Upon combining the expectation values of Equations (2) and

and

(3), and setting ~ =

..

;= M;=<

To simplify the

an electric field of
+

<R>, we obtain Ehrenfest’s theorem

V(;”E) >. (4)

following calculation, we consider atomic motion in

the form ~(;,t) = ; E(;,t), with polarization vector

; independent of x and t. In this case, Equation (2) becomes ; = z 10;vE >,

and if VE is nearly uniform across the atomic wave packet, .

(5)

TO the same approximation, the internal motion of the atom is driven by

the

and

and

+

electric vector ;(t) = “c E(r(t),t) at the position of the moving atom,

the Hamiltonian for the internal motion is H’= Ho - ;.;(t).

NOW consider the motion of a two-level atom, with energy levels El

‘2’
in an arbitrary monochromatic

E(i,t) =~E(~) exp {i[e(~)

+ c. c.

field

+ Wt]}

.

.

●

✎

(6)
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Let Cl and C2 be the amplitudes that the atom is in levels El and E2

respectively. Then the Schr6dinger equation for the internal motion of the

atom is

ijtt,
= ‘Icl - l_lE(t)c2

.

L

where P = < 11;”:

real), and E(t) =

c1
= D1

C2
= D2

LL I

(7)

2 > is the transition dipole moment (here taken to be

E(;(t),t). Upon substituting the relations

exp{-iE1t/ll +~i [At+ e(t)]}

(8)

exp{-iE2t/fi -~i[At+ e(t)]}

into Equations (7), with A = w - W. (UO = (E2 - E1)/fi)and e(t) = e(;(t)),

Equations (7) become

. 7
ijlD,‘~h(A+ 6)D, - @2 exp{-i(e + ~t)}

(9)

i)li32= -;fi(A+ ~)D2- pED1 exp{i(e + ~t)}

Then inserting (6) into Equations (9) and neglecting unessential terms that

12
oscillate at twice the optical frequency (rotating wave approximation) ,

Equations (9) reduce to

(lo)
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Note that E(t) and ~(t) are determined by the atomic position and velocity

through the relations E = E(;) and 6 = ve(~) ● ~.

According to Equations (8), the density matrix for the internal motion,

= C C *, can be written as
pnm nm

’11 = ’11

’22 = a22

’12
= 012 exp {i(e + wt)}

f’zl
= azl exp {-i(e + ~t)}

(11)

where u = DnD;,
nm

and it follows from Equations (10) that unm satisfy

equations of motion

. ‘ in(alz
‘ll=-Z - Uzl)

~22 =
~ in(alz - azl)

.
’12 = - j(d + 6)0,2 +~in(azz - all)

(12)

where Q(t) = ~E(t)/H. Q = uE/)1is the on-resonance Rabi flopping frequency

for a two-level atom in a field of amplitude E.

The expectation value appearing in Equation (5) is written in terms

of the density matrix, or in terms of Unm, as

.+

<; ● E>= V(P12 + 02,)

= 1.J0,2ew{i(e + ~t)}

’021
exp{-i(e + ut)}]. (13)

.

.

●

✎
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Here Onm are slowly varying functions of time compared to the optical factor

exp{iut}. The equation of motion for the atom is obtained by substituting (6)

and (13) into Equation (5) and again discarding inessential terms that

oscillate at twice the optical frequency. The result is

..

~= M; =; PVE(U12+U21)

~ iuEvo(u12 - U21).”-—

Effects of spontaneous emission

relaxation terms to

. 1

‘11=-2

. 1

’22 = 2

Equations (12),

4

(14)

are introduced into the theory by adding

in(~12 - U21) + Ao22 ,

i~(012 - 02,) - ’022 ‘
(15)

.

’12 = -
i(A + 6)012 +; iQ(022 -U1,)-+A729

where A = 4u~lt 11~12 >12/3jlc3 is the spontaneous emission rate (Einstein

A coefficient). The relaxation terms may be derived fro~la first-principles

calculation36 or simply written down on the basis of simple phenomenological

arguments.

Equations (14) and (15) can be rewritten in terms of three real

variables

u = (G,2+021)

V= - i(ulz-uzl)

N = (022 - @

(16)
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as
+:1

F = Mr=@[UVQ + Wwe] (17)

and .

.

(18)

()=( A+; )V -;AU

~=-(A+; )u+$2w -; AV

Ii= -flv - A(W+l)

respectively, where U1l + u22 = 1 was used in the derivation of (18).

Equations (18) are the optical Bloch equations in the rotating wave

approximation.

Equations (17) and (18) determine the motion of a two-level atom in

a monochromatic field with arbitrary amplitude E(z) and phase e(;). It is

clear from these equations that, in general, the radiation force is not

a simple function of the atoms position and velocity, but rather depends

on the history of the motion through the Bloch equations. There are,

however, certain cases in which the radiation force reduces to a function

of atomic position and velocity to an excellent approximation. Some of

these cases are discussed in the following section.

II1. EXAMPLES

A. Steady-state approximation

Consider first the case in which the electric field amplitude
.

E(t) = E(~(t)) and phase derivative ~(t) = ve(~(t)) ● ;(t) vary by only

a small fraction during a natural lifetime T
N

= l/A, i.e., the case in

●

✎



which the atom moves sufficiently slowly so that at each instant U, V, and

W assume the steady-state values obtained from Equations (18) by setting

~=~=fi=(), The steady-state solution of Equations (18) gives

lJ.—— 40(A+ ~)

4(A+ ;)2 +A2+ 20,2 ‘

v=- 2Aa

4(A+ ;)2 +A2 + 202 ‘

and hence, the radiation force, Equation (17), becomes

+
F=-y

An2ve + jl(A + 6)VQ.2

4(A + 6)2+A2 + 2$22
(19)

The meaning of Equation (19) will be illustrated by applying it to a few

simple problems.

For a plane running wave, E(~,t) = E. cos (~ “;-~t), we have
.

Q = PEo/)l= constant, e(;) = - ~ ● ;, and ; = - ~ . ;. The radiation force,

Equation (19), reduces to

;=
LI(A-i O#)2+A2+*Q2

(20)

This is the radiation force associated with spontaneous emission or

with scattering of radiation by the atom. The force is a Lorentzian

function of w centered at W. +~ c ; (atomic frequency plus Doppler shift)

with full width at half maximum (A2 + 202)1’2 corresponding to natural and

power broadening of the atomic responce. In a strong field (n + CO)the

force saturates to the value ~ = ; Ajl~. Equation (20) is consistent with

19
Ashkins theory of resonance-radiation pressure.
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In a general standing wave, E(;,t) = E(;) cos ut, we have n(~) = ~E(~)/jl

and e = O. Here the amplitude E(;) is a solution of the time-independent

wave equation V2E + (W/C)2E = O. The radiation force, Equation (19), is

now

2
?=- )!AV$2

(21)
4A2 +A2 + 2fi2

This force is a result of the interaction between the induced atomic

dipole moment and the amplitude gradient of the standing wave. It may be

1
written in the form ; = ~avE2, where a = - 2Ap2/jl[4A2+A2 + 2(BE.jl)2]

is the atomic polarizahility. The dipole force is derivable from a

potential

F= - vu,

u =~fiA Ln (4A2+A2+ 2Q2). (22)

when the field is tuned above resonance (A > o) the dipole force is in the

direction of decreasing field strength, and the atom tends to be expelled

by the field. When the field is tuned below resonance (A < o) the dipole

force is in the direction of increasing field strength, and the atom tends

to be trapped by the radiation. On resonance (A = O) the dipole force

vanishes. These results for a general standing wave are again

19
with the theory of Ashkin.

Equation (19) may also be applied to problems involving a

consistent

combination

.

of standing and running waves. In this case, a new velocity-dependent term

appears which has not been considered in previous treatments of radiation

force. For example, if the applied field
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E(x, t) = ~~ COS kx COS u)t

+ ET COS (kx - (h) (23)

is written in the form of Equation (6), and the resulting amplitude E(x)

and phase e(x) are inserted into Equation (19), the radiation force

becomes

+ finl~z k~[~2]’/(~2D)

where sll= uET/h, Qz = V(ET + ES)/)1,and

$lZ= o; sinzkx + n; coszkx,

D = 4(A + ;)2+A2+ 2.G?2,

(24)

(25)

The first two terms in (24) will be recognized as generalizations of the

running and standing wcve forces considered above, while the third term is

new and occurs only when standing and running waves are simultaneously

present.. When the atomic velocity is zero, the new term vanishes, and the

dipole force in (24) is derivable from the potential (22) with !Q2(X)taken

from Equation (25). The depth of modulation of this periodic potential is

6U = Umax - ‘rein

[

4A2+A2 + 2(ns + !21)2
= ~fiALn

4A2 + AZ + 2fi; 1
(26)
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where OS = wE~/jl. As the strength of the running wave Q1 increases from zero,

the trapping energy 6U of the standing wave first increases to a maximum

and then decrease to zero as ~A(ns/’J1) = hA(~s/E1). This result disagrees

with the theory of Ashkinlgwhich predicts a monotonic decrease of the

trapping energy with increasing El, and a limiting value proportional to

(E~/E1)2as El +CO.

Another case of current experimental interest is that of atomic motion

in a Gaussian laser beam.

W. Propagating in the z d“

E(i,t) = E. exp

Here n(x,y) = (pEo/)l)exP

Consider a collimated Gaussian beam of spot size

rection

- ()(2+Y2)/W~} COS {kz - ~t). (27)

{- (X2 +y2)/w~} and e(z) = -kz. The radiation

force, Equation (19), consists of a longitudinal radiation pressure

FZ =
Aa2fik

4(A - k;)2 + A2 + 2n2 (28)

and a transverse dipole force

● 2
FT=- ~(A*- kz)v;

4(A - kz)2 +A + 2$22 (29)

Unl

(in

atomic velocity

toward the beam

result leads to

velocity

on the

ke the dipo”e force in a standing wave, which is independent of

the present approximation), the transverse dipole force depends

through the Doppler shift k;. The dipole force is directed

axis when k~>A and away from the axis when ki<A. This

the interesting prediction that in a resonant Gaussian

*

.

.
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-J

.

0

beam (A = o) a co-propagating atomic beam (2 > o) is focussed and trapped

by the field, while a counter-propagating atomic beam (~ z o) is defocused

and expelled by the resonant radiation. Focussing and defocusing of a

beam of sodium atoms by the transverse dipole force in a co-propagating

Gaussian laser beam has recently been observed in the experiment of

Bjorkholm et al?7

B. Dissipative force in a standing wave

Wnen an atom moves with typical thermal velocity v across the fringes

of a simple standing wave E(x) = EO cos kx of visible light, the approximation

of slowly varying field amplitude that lead to Equation (19) is no longer

valid (the amplitude at the moving atom varies as E(t) = CO cos kvt and kv

generally exceeds the spontaneous emission rate A). Trius the above standing-

wave results are valid only in the limit kvc<A, and the case kvLA requires a

different approach. In this subsection we calculate the time-average radiation

force for arbitrary atomic velocity in a weak standing wave. This problem

is of considerable interest In connection with recent proposals for cooling

18,19
an atomic vapor by a standing wave tuned below resonance.

In a simple standing wave Q(X) = QO cos kx (QO = &o/ti), G = o, and the

force acting on the atom, Equation (17), is Fx=~Qofik sin kx. Let x = vt.

Then the time-average radiation force is

.
7

l-x‘-~nOt/k41(t)slnkvt>av, (30)
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and the equations describing the internal motion of the atom, Equations (18),

are

~=. ~Au+Av

i=- @- AU+ SIoCos(kvt)w

k

(31) .

w= - Q cos(kvt)V - A(!A/+ 1)
o

If the field is weak (no<tA), the degree of atomic excitation (or inversion)

W remains near the ground state value (W= -l). For W = -1 the first two

of Equations (31) can be solved exactly. The persistent solution is

U = acoskvt +Bsinkvt (32)

V = Ycoskvt +vsinkvt (33)

where

a=
[

‘Aflo (A/2)2 + A2 - (kv)2]/D

$ = ‘Af20 Akv/D

Y= -;AQ
[ 1

~ (A/2)2 + A2 + (kv)2 /D

v=
[

‘~ot(V (A/2)2 - A2 + (kv)2]/D

(34)

and

[
D=A2- (kv)2]2 + (A/2)2[(A/2?+ 2A2 + 2(kv)2]. (35) “

.
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n

.

insertion of (32) into (30) yields TX = - ~nOtik6, and taking B from (34)

we obtain

vAAs$k2
rx = (36)

4~2-(kv)2]2 + A2[(A/2)Z + 2A* + 2(kv)2]

This equation states that the time-average radiation force in a weak standing

wave is a pOSitiVe quantity times vA. Thus a stanclingwave tuned be”low

resonance \A<o) damps the atomic velocity, while a standing wave tuned above

resonance (A>O) amplifies the atomic velocity.

A reliable caicu”lation of the radiation force in a strong standing wave

requires solut”

difficult than

in the present

on of the full set of equations (31). This prob”em is more

the simple examples considered here and will not be discussed

paper.

IV. CONCLUSION

The purpose of this paper has been to present a simple unified theory

of atomic motion in resonant radiation, and to demonstrate the utility of the

theory by applying it to a number of problems of current interest. The spon-

taneous force in a plane running wave, the dipole force in a general standing

wave, and the transverse dipole force in a collimated Gaussian beam were

obtained by almost trivial applications of the theory in the steady-state

approximation. New results were presented for the radiation force in a

combination of standing and running waves, and a formula for the dissipa-

tive force in a weak standing wave was derived.
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It should be emphasized that a theory based on Ehrenfest’s theorem

describes the motion of the centroid of the center-of-mass probability

density. It says nothing about the spread of the atomic wave packet

about the centroid. Because of this limitation, results of the present

theory are, in some cases, misleading. For example, the present theory

suggests that the radiation force acting on a slowly moving atom in a

standing wave vanishes as A + O, while a more detailed theory
24

shows

that, for A = O, the atomic trajectory is split by the resonant

radiation, in much the same way as a narrow atomic beam is split in the

Stern-Gerlach experiment, but the splitting is symmetric so the centroid

is not accelerated. This lack of detail in the present theory is the

price paid for simplicity. On the other hand, in almost all problems

of practical interest, the deBroglie wavelength of the atom is many

orders of magnitude smaller than the optical wavelength (the minimum

scale size of the applied field), and therefore it is expected that the

simple picture of a point atom moving along a classical trajectory is

an excellent approximation for a wide class of problems.

The present theory is clearly applicable to more elaborate problems

than considered here. We believe that our basic working equations,

Eqs. (17) and (18), will provide a convenient and fruitful framework

which to study such problems.

in

.

.

.

.
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Chapter 6

ATOMIC MOTION IN RESONANT FLUCTUATING LASER RADIATION
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ATOMIC MOTION IN RESONANT FLUCTUATING

LASER RADIATION

R.J. Cook

University of California

Lawrence Livermore Laboratory

P.O. BOX 5508

Livermore, California 94550

ABSTRACT

The effect of field fluctuations on the motion of a two-level atom

in resonant laser radiation is investigated theoretically. The internal

motion of the atom is treated quantum-mechanically (optical Bloch equations),

the translational motion, which is coupled to the internal motion, is

treated classically (Ehrenfest’s theorem), and the fluctuating radiation

is treated as a classical electromagnetic wave with stochastic phase

(phase-diffusion model ). An expression for the radiation force and

equations of motion for the ensemble-averaged Bloch vector are derived and

used to calculate: (1) the radiation force in a plane running wave,

(2) the steady-state radiation force in a general standing wave, and

(3) the dissipative force in a plane standing wave in the limit of strong

phase fluctuations. In case (3) it is found that the atomic velocity

is damped when the radiation is tuned above resonance, which is opposite

to the case of a weak coherent standing wave in which damping occures

●

✎
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for radiation tuned below resonance. It is shown that fluctuations have

a substantial effect on the radiation force only when the spectral width

of the radiation approaches or exceeds the spontaneous emission rate A.

s

.
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I. INTRODUCTION

The theory of atomic motion in resonant radiation has attracted

considerable interest in recent years not only because of a basic desire

to understand this aspect of the interaction of radiation with matter

but also because of the possibility of applying the

4,10;28of laser isotope separation 3 atomic trapping

22,25neutral-atom acceleration , atomic-beam-deflect4

and so on.

Although all real sources of radiation undergo

theory to problems

17-19,35,37
and cooling 9

on spectroscopy 2,5,11
3

fluctuations and

have finite bandwidths, existing theories of atomic motion in resonant

radiation have largely ignored the fluctuations, and have treated

laser radiation as if it were perfectly monochromatic. Questions

naturally arise, therefore, as to what effect fluctuations might have

on the atomic motion, or to what extent the radiation force acting on

the atom is influenced by the finite coherence time of the applied field.

The purpose of this paper is to take a first step toward answering these

questions.

In a recent pape$8 it was shown that the motion of a two-level

atom of mass M, resonant frequency LOO, transition dipole moment u, and

spontaneous emission rate A, in a general monochromatic field

is determined by the coupled set of equations

M? = (1/2)tl[U VL’+ Vine]

(1)

(2)
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;=(A+6)v -(1/2)Au (3a)

i= -(A + b)u + S2w-(1/2)Av (3b)

w= - flv-A(w+~) (3C)

where n(;) = DE(; )/’k is the on-resonance Rabi flopping frequency, (u,v,w)

is the Bloch vector in the rotating wave approximation, and A = u - U.

is the detuning frequency. In Eq. (2) v~, S2,andV6

atomic position ;, and u and v are functions of time

Eqs. (3), while in Eqs. (3) e(t) =Ve(;)”~and~(t) =

are functions of

determined by

~(~) are regarded

as functions of time determined by the atomic trajectory ;(t). Equation

(2) was derived from Ehrenfest’s theorem, and Eqs. (3) are the usual optical

Bloch equations, here driven by the electric field at the moving atom.

In the present paper we shall extend Eqs. (2) and (3) to the case

in which the electric field contains an additional stochastic phase $(t),

E(;,t)
1 I

= E(;) COS ~t+e(;) ++(t) , (4)

.

and the phase derivative O(t) is ~-correlated in time, the so-called

39
phase-diffusion model of laser fluctuations . The phase-diffusion model

is motivated by the fact that radiation emanating from a single-mode

laser operated far above threshold is well represented by a classical electro-

39,40
magnetic wave with fixed amplitude and randomly drifting phase . It

should be emphasized that by taking the amplitude E(;) to be fixed and
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the stochastic phase $(t) to be independent of position, we are restrict-

ing the theory to f“

field E(~,t) in the

interaction region

uctuating fields of a rather special form. The

interaction region will be of this form when the

s small compared to the coherence length of the

source laser and when all optical path lengths from the source to the

interaction region, through the optics that generate the desired field

E(;,t), differ by much less than a coherence length. For example, if a

laser beam is folded back on itself by a plane mirror to form a standing

wave, the field will be of the form in Eq. (4) in the region adjacent

to the mirror where the “visibility” of the standing wave interference

pattern is near unity.

In the following section the statistics of a field with fixed

amplitude and ~-correlated phase derivative is briefly reviewed. In

section III an expression for the mean radiation force is written down,

and the equations of motion for the ensemble-averaged Bloch vector are

derived. In section IV the theory is applied to a plane running wave

and a general standing wave in the steady-state approximation, and

finally, in section V, the dissipative radiation force in a plane

standing wave is calculated in the limit of broad-spectrum radiation.
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II. FIELD STATISTICS

The electric field, Eq. (4), is the real part of

We assume that the phase derivative ~(t) has mean value zero and is

&-correlated in time,

<dt)>=o ,

< i(t) m) > = Z1-’d(t’-t) .

It follows from these relations that the phase change

~

t
@(t) - ($(0) =

o

has mean zero and variance

< p(t) - 440)]’>

The stochastic phase $(t) is

of statistically independent

;(S) ds

(6)

(7)

(8)

t

H
t= ds ds’ < ~(s) ~(s’)>

o 0

=2rt. (9)

a constant +(0) plus the sum of a large number

impulses ~(s)ds. Therefore, by the central

limit theorem41, $(t) is Gaussian distributed. It has been emphasized by

several authors that the statistics of the diffusing phase $(t) is
42,43

formally analogous to the statistics of Brownian motion in one dimension .



86

The temporal correlation function of the electric field E, at some

prescribed point ~, is

< i(t)i* (t’)>
= ~2eiu(t’ -t) <ei[$(t’)-$(t)l> ,

and because +(t) is a Gaussian stochastic process

<ei [@(t’)- $(t)])= e-(1/2)<[$(t’)- +(t)]’>.

(lo)

(11)

Using (8) and then (7), we find that

t’

H
t,<[@(t’)- $(t)] 2>= ds ds’( ~(s) ~(s’)>

t t

= 2rlt’-tl . (12)

Hence the correlation function <~(t);* (t’)> = C(t’-t) has the form

C(T) = E2eiwT
- rl~!

Y (13)

and the spectrum of the radiation,

r .
I(M’) = L(~)e-lm’T d~

w

2rE2=

(~’-w)2 +rz ‘

is seen to be Lorentzian with spectral width Am’ = r.

(14)
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III. EQUATIONS OF

The only change of Eqs. (3) resulting

stochastic phase ~(t) to the monochromatic

MOTION

from the addition of the

field (1) is that ;(t) is

replaced by ~(t) + ~(t). The Bloch equations become

;=(A+s+~)v -(1/2)Au (15a)

; = -(A+; + $)u + m -(1/2)Av (15b)
.
w. - fw -A(w+l) (15C)

The equations of motion for the ensemble-averaged Bloch vector (~,;,~)

may be derived from Eqs. (15) without approximations by using the theory
.

of multiplicative stochastic processes when $(t) is 6-correlated in

time. For completeness we shall present here a simple approximate cal-

culation leading to the same

44,’45
the literature for more

We define vectors

x=

and matrices

M=

,,

u
v
w
,.

-A/2
-(A+~)
o

c.

A+i
-A/2
-Q

result, and refer the interested reader to

rigorous treatments of this problem.

[.1o
0
-A

o

-:

[1010
N= -1 0 0 .

000

(16)

(17)

(18)

Then Eqs (15) take the form
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i=(M+L$N)X+C (19)

Next we integrate this equation over a time interval tO to t sufficiently

short that M(t) may be regarded as constant over the interval,

f

t

I
t

x(t) = x(to) + C(t-to)+M X(s)ds +N ;(s)X(s)ds. (20)

‘o ‘o

Equation (20) is solved by iteration. The zeroth order solution is

x(t) = X(to). Upon substituting this on the right in (20) we obtain the

first order solution

x(t) = X(to)+C(t-to)+MX(to)(t-to)+NX(to) ~t &s)ds . (21)

‘o

A second iteration yields the second order solution

X(t)-x(to) =
[ (t-to) + ; Mt-to)2 + N

~
t ds $(s)(s-to)]C

‘o

[
+M (t-to) +; M(t-to)

2+ N J:. ‘s J::@s’)1%)

[j

t

\

t
+N ds~(s) +M ds~ (s)(s-to)

‘f) ‘o
t

H

s
+N ds ds’ $(s); (sI)] X(to) . (22)

‘o ‘o

We now take the ensemble average of (22) noting that X(to) and &t),

for t>to, are statistically independent because X(to) depends upon it)
.

only for t t to and $(t) is &correlated in time. Equation (6) indi-
.

cates that all terms linear in o vanish when a’veraged, and hence
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(22) yields

x(t) - i(to)

t-t. = [ l[Mi(to) + c1
l+; M(t-to)

1
t

H
s

+
t-t.

ds ds’< $(S)~(S’)> N2~(to)

‘o ‘o
(23)

Finally, with the help of Eq. (7), the double integral in (23) is readily

evaluated, and passing to the limit t+ tO we obtain the equation of motion

for the ensemble-averaged Bloch vector

.

X=(M+rN2)~+C, (24)

or in component form

;=(A+~)~ -(1/2)(A + 2r)ii (25a)
.
i=- (A + ;)ii+ ti-(1/2)(A + 2J7); (25b)

;= -$2j-A(fi+l) (25c)

The net effect of the stochastic phase on the Bloch equations is to

change the transverse relaxation rate (R~ = l/T;) from A/2 to (A+2r)/2.

The longitudinal relaxation rate (Rl=l/Tl=A) is not affected by the

fluctuating field.

The ensemble average of the radiation force, Eq. (2), is simply

(26)

This equation together with Eqs. (25) determine the atomic trajectory
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in the fluctuating radiation.

IV. STEADY-STATE APPROXIMATION

When the atomic velocity is small or when ve(~) and ~(~) are slowly

varying functions of position, the quantities ~(t) = VO(~).~ and

S2(t)= .Q(;), that drive the Bloch equations, are SIOWly varying functions

of time. In this case, the Bloch vector (~,~,~) is, at each instant, very

nearly equal to the “steady-state” Bloch vector obtained from Eqs. (25)
. . .

by setting ;=~=~=O, namely

ii= -4!G’(A+ ;)/D (27)

i = -2(A + 2r)n/D (28)

i=-
[ 14(A+ 6)2 + (A+ 2r)2 /D (29)

where

1
D = 4(A+ 8)2 + (1 + 2r/A)[A2’(1 + 21’’/A)+ ZOZ . (30)

The radiation force, Eq. (26), becomes

F=- %qA~2ve + ti(A + &)VS12

4(A+ iI)2 + q(qA2 + 2$22)
(31)

where q=l+2r/A.

{
In a plane running wave, E(~,t) = Ecos ~“~- ~t - $(t) } , the

radiation force reduces to

(32)
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*

Near resonance

sonance
[
(A -

[(A - ~D~)2< qA2/4] this force is less than, and off re-

~0*)2 >qA2/4
1

is greater than, the corresponding force

without fluctuations. The running wave force can be written as

r=
the

the

turn

(A/2)(fi+l)%~=AP2%~, where P2 = (~+1)/2 is the probability that

upper atomic level is occupied. Thus, with or without fluctuations,

force is simply the rate of spontaneous emission AP2 times the momen-

~~ per incident photon 5.

In a general standing wave, E(;,t) = E(l) cos {d + $(t) } , the

steady-state radiation force takes the form

‘?=-

Here the force “

hAVfi2

4A2 + q(qA2 + 2f22) “
(33)

s always weaker with fluctuations than without. The

standing wave force is derivable from a potential

r= - vu , (34)

[ 1
U = (hA/2q) in 4A2 + q(qA2 + 2!22) . (35)

Since the minimum scale size of inhomogeneities of the field

E(;,t) is of order A, the maximum frequency of b(t) or O(t), for an

atom moving with velocity v, is of order kv, where k = 2Tr/A. A suffi-

cient condition for the validity of the steady-state approximation is

that this frequency be small compared to the smallest relaxation rate

in the Bloch equations, i.e.

kv<< A . (36)
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This condition is not necessary for a plane running wave because

ve = -~ and Q are independent of position, but in many cases of practi-

cal interest, e.g. a standing wave, condition (36) is necessary, and this

places a rather severe constraint on the range of velocity that can

be treated within the steady-state approximation.

V. ATOMIC MOTION IN BROAD-

SPECTRUM RADIATION

When the spectral width r of the applied field is large (r>> A),

the transverse relaxation rate R~ = (A+ 21’)/2greatly exceeds the longi-

tudinal relaxation rate Rl= A. In this limit, and when kv <t (A+ 2r)/2,
. .

~ and ~ may be set equal to zero in the first two Bloch equations,

Eqs. (25a) and (25b), to obtain

4(A+ ~) &
ii=

4(A+5)2 +(A+2r)2 ‘

2(A+ ZI’)Qfi
i=

4(A+ 6)2+ (A+ 2r)z ‘

(37)

(38)

and using this”value for V, the third Bloch equation,

.

\

2(/1+ Zr)Q2~.-A+ 1G-A ,4(A+ 6)2+ (A+2r)2
(39)

can be integrated without difficulty. Upon substituting (37) and (38)

into (26), the radiation force becomes

(40)

.

*
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.

●

.

.

This approach is an improvement on the steady-state approximation be-

cause the constraint kvfc(A+2r)/2 is much weaker than kvzKA when D>A.

As an illustration of the broad-spectrum theory, we shall apply

Eqs. (39) and (40) to the motion of an atom in the standing wave

E(x,t) = 2E,cos(kx)cos{@+ @(t) t . It is, by now, well known that the

time-averaged radiation force acting on a uniformly moving atom (x=vt)

in a weak (Qo = VEO/fI <<A) coherent ($(t) = O) standing wave is the sum

of the radiation forces associated with each of the two running wave com-

ponents (EOcos{kx-wtt and Eocos{kx+wt t), as if those components acted

independently38,

F= A Q;tik A fl;%k

4(A-kv)2 + A2 4(A+ kV)2 +A2

16A fi;hk2vA=

[4(A-kv)2 + A2][4(A + kv)2 + A2] “
(41)

This force is a positive quantity times vA, and hence, if the standing

wave is tuned below resonance (AcO), the force opposes the velocity and

the atomic motion is damped. It was first suggested by Hansch and

Schawlo~8, and later by Ashki;g and others, that such a force might be

used to cool an atomic vapor to a very low temperature (T-lK or less)

in a short period of time (At-10-5s). Here we shall show that in a

broad-spectrum standing wave a different result is obtained, and, in

particular, that the radiation must be tuned above resonance (A>O)

to obtain cooling.

For the fluctuating standing wave E(x,t) = 2 Eocos(kx)cos{@+$ (t) \ ,

~(x) = 2Qocos(kx), e(x) = O, and Eq. (40) becomes
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F 4Ail~*kfi sin2kx=. (42)
4A2 + (A+2r)2 “

With x = vt, the time-averaged radiation force is .

~=- Afl; %k<ii(t) sin 2kvt >av/(A2 + r2) , (43)
..

where we have taken the broad-spectrum limit r>>A. Equation (39)

becomes

.

ii=- (A+ 2acos2kvt)fi - A , (44)

where a = 4(A+21’)~t /[4A2+(A+21’)2]~ 2rn~ /(A2+r2), and the solution is

t
~(t) = -A

j{
exp -(A+a)(t-tO)

-(~~kv) (sin2kvt-sin2kvtO)} dtO

= -A J{exp -(A+a)s-(a/kv)sinkvs cos[kv(2t-s)]}ds.
o (45)

With the help of the identity
46

e-zcos e = Io(z)+ 2~ (–)n Incus , (46)
n=l

where In(z) is the modified Bessel function of order n, the solution (45)

may be written as a Fourier series,

co
i(t) = aO/2 +n~l (ancos 2nkvt + bnsin2nkvt) ,

=
(47)
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where

●

✎

.

*.

‘e-(Ati)s In(asinkvs/kv) cosnkvs ds ,a
n
= 2(-)n+lA

f
(48)

o

J
‘e-( Ati)s In(asinkvs/kv) sin nkvs ds .bn = 2(-)n+lA
o

(49)

On multiplying (47) by sin2kvt and averaging over time, only the term

with coefficient bl gives a nonvanishing contr

becomes

~= -(1/2)AQ;%kb1/(A2 +r2) ,

and from (49)

bution. Equaton (43)

Jm e-(A+a)s 11(asinkvs/kv) sinkvs ds .
bl

= 2A
o

(50)

(51)

Since II(z) is an odd strictly increasing function”of Z, it is easy to

see that, for SSO, I1(asinkvs/kv)sinkvs (and hence bl) has the same sign

as v. It follows that ~ amplifies the atomic velocity when the radiation

is tuned below resonance (AKO), and damps the velocity when the radi-

ation is tuned above resonance (AsO). This is the opposite of the

prediction based on a weak coherent standing wave.

A conservative estimate of the stength of the damping force is

obtained by replacing I1(asinkvs/kv) in Eq. (51) by the first term in

its power series expansion, namely (1/2)asinkvs/kv. Higher order terms

increase the magnitude of the force but do not alter the sign. The

result is
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F=- AAtik2a2v
(52)

21?[A+a][4(kv)2+ (A+a)2]

*In the dissipative case (A>O), ;(v) is maximum at kv = z , is minimum

A+ci
atkv=~, and between these limits is approximately linear in v,

F = -AAfik2a2v/[2r(A+a)3]. The solution of the equation of motion

MiI= {}
~(v) is then v(t) = v(0)exp -t/~v , where Tv = 2Mr(A+~)3/Mfik2~2

is the velocity relaxation time. To get an order of magnitude estimate

8-1, &r&’o=losof -rV,we take A = 10 s 9 ‘1, M = 4X10-23 g, ~ = 0.5~m, and

obtain T = 5X10-5S.
v

Although the damping force considered here is of comparable magnitude

to that considered by H;nsch and Schawlow, it

the former will probably be more difficult to

because the broad-spectrum radiation required

phase and not amplitude fluctuations.

Perhaps the most important conclusion to

must be emphasized that

detect experimentally

must be the result of

be drawn from this work,

a conclusion that follows by inspection of Eqs. (25),

have a substantial effect on the radiation force only

width I’approaches or exceeds the spontaneous rate A.

is that fluctuations

when the spectral

.

..

*
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Chapter 7

QUANTUM-MECHANICAL FLUCTUATIONS OF THE RESONANCE-RADIATION FORCE
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Quantum-Mechanical Fluctuations
of the Resonance-Radiation Force

R. J. Cook

University of California
Lawrence Livermore Laboratory

P.O. BOX 5508
Livermore, California 94550

Abstract

The influence of quantum-mechanical fluctuations of radiation

pressure on atomic motion in resonant radiation is investigated

theoretically. It is shown that fluctuations of the radiation force

result from interaction of the fluctuating atomic dipole moment with the

applied field (induced fluctuations) as well as from random recoils that

accompany spontaneous emission (spontaneous fluctuations). Atomic motion

under the influence of the fluctuating radiation force is described by a

Fokker-Planck equation, and this equation is applied to problems of atomic

trapping and cooling. It is shown that cooling of an atomic vapor by a

standing wave tuned below resonance, known to occur in a weak field, is

inhibited by fluctuations in a strong field, and that fluctuations can

prevent stable trapping of atoms by the dipole radiation force.

Y

.,
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The importance of quantum-mechanical fluctuations of the radiation

force in determining the motion of an atom in an electromagnetic wave was

first emphasized by Einstein in 1917!7 In this early work, Einstein

showed that fluctuations due to both spontaneous and induced

absorption/emission processes were necessary to account for the

Maxwellian distribution of atomic velocity in thermal equilibrium. In

recent years, a number of authors have proposed methods for

17,19
trapping,

25,28
deflecting,

18,19,20
and cooling atoms by use of the

resonant light forces in tunable laser radiation. Although the

fluctuations due to random recoils accompanying spontaneous emission

(spontaneous fluctuations) have often been considered in these proposals,

the fluctuations associated with induced absorption-emission processes

(induced f1actuations) have usually been ignored.

The purpose of this letter is to point out that induced fluctuations

can strongly influence atomic motion in resonant radiation and, in

particular, that induced fluctuations place a lower bound on the

temperature achievable by radiation cooling and lead to finite, often

short, confinement times for atoms in radiation traps.

In strong coherent radiation, induced atomic processes are correctly

described

equations

classical-

ly interaction with a classical field. The Heisenberg

for one-dimensional motion of an atom of mass M in a

y-prescribed linearly-polarized electromagnetic wave ~(x,t).=

&E(x,t), in the dipole approximation, are

.
i= ~/M , (1)
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# = lhE(i, t)/ax , (2)

where j is the component of the electric dipole moment operator in

direction ~. If the atomic wave packet is small compared to the distance
A

over which aE(x,t)/ax changes by a significant amount, the operator R in

(2) may be replaced by its expectation value R = c~>, since any matrix
A

element involving aE(R,t)/ax is only negligibly affected by this

replacement when the wave packet is small.

We consider the motion of a two-level atom with internal states II>

and 12> of energy El and E2 respectively in a monochromatic field

E(x,t) = E(x) cos {6(x) + d} with arbitrary amplitude E(x) and phase

e(x)* In terms of atomic operators ~ = 11s<21 and ~+= 12><11, the dipole
A

operator takes the form L = u(S + ;+), where v = z11C12> is the

transition dipole moment, taken here to be real. In the Heisenberg

picture, operators $, ~+ are rapidly varying functions of time. It is

more convenient to work with slowly varying operators 3 and 6+ defined

by relations $ = ~ exp {-i[e + Ut]} and ~+ = 6+ exp {i[e + d]}

respectively. Upon substituting the above expressions for E(x,t) and ;

into (2), and discarding inessential terms that oscillate at twice the

optical frequency (rotating wave approximation), the equation for atomic

.

momentum becomes

(3)
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.

.

.+
where 61

=G+o, $
2

= i(il- ~+), and fl= PE/fi is the on-resonance Rabi

flopping frequency of the two-level atom.

It is well known that the expectation values of operators $, ~z, and

6+.
‘3

=Oa - :8+, namely u = <; >, v
1

=c&zandw
2 = <63s, are the

components of the Bloch vector; and if the atom experiences relaxation

due to spontaneous emission, these components satisfy the optical Bloch

12
equations

Ii=(A+&)v-~Au ,

i= -(A + ;)U + ~ -~Av , (4)

;= -ml- A(w+l) ,

where A = w - W. is the detuning frequency (UO = (E2 - El)/fi), and

A is the Einstein spontaneous emission coefficient. The expectation

value of (3) is the mean radiation force acting on the atom

(5)

Equations (4) and (5) were recently derived using a slightly

38
different approach, and were applied to a number of problems of

current interest.

Equation (3) indicates that the force ~ = fi[(ao/ax)~l + dWM~21/2

should be regarded as an operator. Using the fact that operators ~1 and
A
02 satisfy the anticommutation relations ~i ~“ + ~“ ~“ = 2~””

J J1 lJS it is

readily shown that the mean square force has the form
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“2’‘+[(92+‘2($$21 (6)

which is independent of the state of the atom. Comparing (6) with (5),

and noting that u and v are constrained only by the relation U2 + V2 < 1,—

it is easy to see that the rms fluctuation of the radiation force,

(<~2>-F2)1/2, can exceed the mean force F. This is a clear indication

that quantum fluctuations of the radiation force will have a significant

influence on atomic motion.

The motion of an atom under the influence of a fluctuating force is

described by the Fokker-Planck equation. If in time At the force gives

rise to a mean increment of momentum CAP>and a mean square fluctuation

of momentum about the mean increment <[AP - <AP>]2>, if the limits

Lim <Ap>
—=F,At+o At (7)

Lim
2

< Ap - <AP>l >
At+-o At =2D, (8)

exist, and if all other moments per unit time, e.g. <[Ax - <AX>][AP -

<AP>]>/At, vanish in this limit, the Fokker-Planck equation takes the

form48

af=
at -=$[Ffl+$[Dfls (9)

where f(x,P) is the distribution function in phase space.
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The limit (7) is clearly the mean radiation force of Eq. (5). To

calculate D we proceed as follows. With ~ defined as the right-hand side
A

of (3), the increment of momentum is AP = f: ~(s)ds, the mean
. 0

increment is < A% = j: F(s)ds, and
o

A

<[/@ - <A;>]*>= Jt ~t dsl ds2 [<;(sl); (s2)>
to to

- F(S,)F(S*)I . (lo)

.
The correlation time of fluctuations of the force F is essentially the

correlation time of fluctuations of the dipole moment fi,which is known

to be on the order of the natural lifetime Tn ❑ I/A. Weconsider the

case in which the amplitude ~ and phase @ of the applied field (at the

moving atom) are nearly constant over a natural lifetime. In this case,

the field-dependent factors in the force (3) can be taken outside of the

integrals in (10), and for At = t - to somewhat larger than a

correlation

2D1

time, Eq. (10) yields

. A ,2~ < Ap - cAP> >
At

% L: ds [<F(O);(S)> - F(0)F(s)]

= fi2

{()
~ 232 ~-j U] (S) ds

()
+ .n2 R 2 ~-~ V2&i) ds

I
+ Q ;+~~-fl [Vi(s) + lJ2(s)]ds , (11)
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where

u,(t) = <Gl(o);$t)> - U(o)u(t) ,

v,(t) = <al(o)&z(t)> - U(o)v(t) ,

U*(t) = <Gz(o)$(t)> - V(o)u(t) ,

V*(t) - <62(o)G2(t)> - V(o)v(t) ,

we have set to = O for simplicity, and the subscript on D1 indicates

that this is the contribution from induced fluctuations.

The theory of dipole correlation functions, such

fairly standard, having been developed in connection

resonance fluorescence by Mollo~g and others.
50,51

this theory, if we introduce two additional corre”

w,(t) = <G,{o)qt)> - U(o)w(t) ,

w2(t) = <;2(o);3(t)> . v(())w(~) ,

(12)

as (12), is by now

with the problem of

According to

ation functions

(13)

then each of the sets of correlation functions Ui, Vi, Wi (i = 1,2)

satisfy homogeneous Bloch equations

t= -(A + 6)Ui + QW - ~ AVi ,
i i
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The remainder of the calculation is given in outline. First, it is clear

from (11) that only the real parts of Ui, Vi, Wi are significant.

The real parts are even functions of t, so the integrals in (11) are

replaced by twice the integrals from O to ‘. Next, integrating Eqs. (14)

from O to ~, we obtain an algebraic set of equations for J’; Ui ds,

f~ Vi ds, and J; Wi ds involving initial conditions Ui(0),
o

Vi(0), and Wi(0). The initial conditions are obtained from (12J and

(13) by using ~i ;j = dij + i~ijk~k and the steady-state solution of the

Bloch equations (4). Finally, the algebraic equations for ~~ Ui ds

etc. are solved, and the results are used in (11) to obtain

+ 2A%2(3A4 + 6A2~2 + 4Q4)

aQ ae [16AeQ2(2A2+ 02)]-n——
ax ax

()+Q2a&ax 2[2Q2A(12A:- A* + 2Q2

1
+ A(4A: + A*)*] [4A: + A* + 2Q2]-3 (15)

where Ae = A + G is an effective detuning. In a weak field (0-+ O),

(15) becomes

(16)
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and in a strong field (o + CO)

(17)

where the second term in (17) is usually negligible when an/ax # O.

The term containing D in the Fokker-Planck equation represents

diffusion of momentum. In addition to the coefficient of induced

‘iffusion ‘I’
there is a well-known contribution DS to the total

diffusion coefficient D = D1 + DS, resulting from random recoils

associated with spontaneous emission. If the atoms dipole moment is

transverse to the x-direction, it is readily shown that the coefficient

of spontaneous diffusion is DS ={A(fiuo/c)2P2=~A(fiuo/c)2(w + 1) =

A(liUoQ)2/5c2[4A~+ A* + 2Q2], where P2 = +(w + 1) is the probability

that the upper atomic level is occupied, and we have taken the

steady-state value of w to obtain the final form. In a strong field DS

saturates to the value DS = &A(fiuo/c)2.

We now consider a few simple examples to illustrate the above

theory. In a strong resonant traveling wave E(x,t) = E cos {kx - uotl,

the saturated radiation forc~8 is F = @ik (k = Me/c), the coefficient

1 fik)2, the spontaneousof induced diffusion, Eq. (17), is D1 =~A(

coefficient is DS = &A(fik)2, and the total momentum diffusion coefficient

D = 7 A(fik)z/20 is 3.5 times that which might have been expected on the

basis of spontaneous recoils alone.
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In a strong standing wave E(x,t) = 2E0 cos kx cos ~t

(o = 2Q0 cos kx, no = PEo/fi, e = O), the dipole force acting on a

38
slowly moving atom is F = - ftAaQ2/ax/[4A2 + A2 + 2Q2], the

induced diffusion coefficient, Eq. (17), is D1 =~fi2(a~/ax)2/A

~ ~~(fik)2/A, and Ds is negligible compared to D1. On resonance

(A = O) the dipole force vanishes and atomic motion is dominated by

induced momentum diffusion. In a standing wave, induced diffusion

results from a splitting of the atomic trajectory after each spontaneous

transition to the ground state, and is closely related to the optical

24,52
Stern-Gerlach effect.

The cooling or heating of an atomic vapor by resonant radiation is

calculated as follows. Generally the radiation force consists of a part

F’= - aV(x)/ax derivable from a potential and a part F“” not derivable

from a potential. Multiplying the Fokker-Planck equation, (9), by

P2/2M + V(x), integrating over phase space, and performing some

integrations by parts (assuming f = O at 1x1 = ~ and IPI = m), we obtain

the relation

~ = M-l ~~[D + PF””]fdxdP

for the rate of change of the mean translational energy

(18)

E = ~~ [P2/M + V]fdxdp of the atom. For example, in a weak (0 << A)

standing wav~tuned below resonance by the amount A = -~A, the total

diffusion coefficient is D % 70~(%k)2/10A, the radiation damping

force~8 for small atomic velocity, is F“” = -(2$fk2/A2)v, and (18)
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states that the energy E dissipates until D + PF”” = O or

7%
~Mv ~7fiA/40. For A = 108s-1 this corresponds to a temperature

T ~ 10-4K. However, as the intensity increases, D increases

without bound, because of induced diffusion, while the strength of the

dissipative force F“- is certainly bounded by ~A6k. Therefore induced

fluctuations inhib”

Finally, cons”

strong field (~ >>

t cooling in a strong standing wave.

der radiation trapping of atoms by the dpole force in a

A) of amplitude n(x) = Q. exp {-x2/we} , e.g. transverse

the dipoletrapping in a Gaussian laser beam. The potential energy of

forcej8 V = ~1 tiALn(l + Q2/2A2), assumes its minimum value

v
min = -0.28 _fiQofor A= -0.35 $2.. Since no dissipative force acts

on the atom, (18) states that ~ = ~/M, and (17) yields the estimate

D= D1 + DS% &fi2&Aw~ + =& A(lfk)2for the average D in the

well. A trapped atom gains energy from fluctuations and escapes from the

well in a time of order At = -Vmin/~ = 2*8%QoM/hfi2k2 +%2Q~/AW~].

For a sodium atom in a Gaussian beamof radius W. = 10 vm and power 50 mW,

tuned tO the 32$/2 + 32p312 tranSitiOn, the confinement time is

At % 10-4S. This is about two orders of magnitude less than the value

obtained if only spontaneous fluctuations are considered.

The above examples indicate that quantum-mechanical fluctuations of

the resonance-radiation force will be an important consideration in the

design of experiments to trap or cool atoms and molecules.



Chapter 8

OVERVIEWOF EXPERIMENTS ON ATOMIC I$KITIONIN RESONANT RADIATION
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Deflection of an atomic beam by momentum transfer from resonant

traveling radiation was first observed by R. Frishl in 1933. Because

of the low spectral purity of radiation sources available at the time,

the deflections achieved in this experiment were very small, and of

little practical interest. An improved experiment to measure the

deflection of an atomic beam by the spontaneous radiation force, but

still using classical sources of radiation (discharge lamps), was made by

J. L. Picque and J. L. Vialle2 in 1972. In this experiment atomic

beams of sodium and cesium were deflected by transverse illumi’nation~and

the beam profile, with and without illumination, was measured with a

hot-wire probe. Beam deflection and beam spreading were found to be in

reasonable agreement with theory. The magnitude of deflections

(e -10-5 rad) was again quite small.

With the invention of the Laser in the early 1960’s and, in

particular, with the development of high power tunable lasers in the

early 1970’s the experimental situation changed dramatically. Numerous

proposals were made involving applications of the radiation force to

problems of isotope separation, atomic trapping and cooling, neutral-atom

acceleration, and atomic-beam-deflection spectroscopy; and several

experiments were

experiments will

R. Schieder,

carried out using laser radiation. Some of these

now be listed.
..

H. Walther, and L. Woste3 demonstrated deflection of a

sodium atomic beam by the radiation pressure of a tunable cw dye laser,

the observed deflections being about 60 times larger than those achieved

in the experiments of Frish and of Picque and Vialle. J. E. Bjorkholm,



111

.

*

.

A. Ashkin, and D. B. Pearson53 showed that the resonance-radiation

force of light propagating axially down a tube filled with sodium vapor

causes a macroscopic pressure increase along the length of the tube.

Specifically, they achieved a pressure difference of 50% in a tube of

20 cm length and they suggested that an isotonically selective

application of this effect might be used for isotope enrichment. In 1973

P. Jacquint, S. Liberman, J. L. Picque, and J. Pinard54 demonstrated

that spectroscopy can be carried out by observing beam deflection as the

frequency of the deflecting radiation is varied. The beam is deflected

only when the tunable radiation comes into resonance with an atomic

transition. The method is capable of high resolution as demonstrated by

the well resolved hyperfine structure of sodium in this experiment. In

1974 isotope separation by selective deflection of one isotopic component

of an atomic beam was first achieved at Lawrence Livermore Laboratory by

A. F. Bernhardt, D. E. Duerre, J. R. Simpson, and L. L. Wood
10 for

isotopes of barium using a tunable dye laser.

All of the above experiments involve applications of the spontaneous

radiation force. The first observation of the dipole radiation force was

made in a recent experiment at Bell Labs by J. E. Bjorkholm,

37
R. R. Freeman, A. Ashkin, and D. B. Pearson . In this experiment

focusing and defocusing of a sodium atomic beam by the transverse dipole

force in a copropagating Gaussian laser beam was observed when the laser

radiation was tuned, respectively, below and above the Bohr transition

frequency of the atoms. The strength and qualitative behavior of the

dipole force were found to be in satisfactory agreement with a theory of
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the dipole force equivalent to that developed in Chapter 5. This

experiment represents an important step toward the development of

radiation traps for atoms and molecules.

A first attempt to measure the induced-rate momentum transfer in a

strong resonant standing wave was made very recently in the experiment of

E. Arimondo, H. Lew, and Takeshi 0ka55 at the Herzberg Institute of

Astrophysics. A cw laser beam was reflected back on itself by a mirror

to form a standing wave, a well colimated atomic beam of sodium was

propagated across the standing wave, and the atomic-beam profile was

measured on the downstream side of the interaction region using a

hot-wire detector. By blocking the mirror the standing wave was replaced

by a running wave, and in this way a comparison of beam deflection and

spreading in standing and running waves of comparable intensity was made

without altering the alignment of the atomic beam and detector. At the

maximum laser power level used in this experiment (100 mW) the induced

rate Q was calculated to be about 40 times the spontaneous rate A, and

therefore it was expected that deflection processes due to momentum transfer

at these two different rates would be clearly distinguishable. With the

mirror blocked only a rather small deflection was measured, while with

the mirror unblocked, to form a standing wave, much larger deflections

were obtained. This appears to be a clear indication that momentum

transfer at the induced rate was observed in this experiment. However,

quantitative agreement between theory and experiment has not yet been

achieved. The beam spreading measured in the experiment is smaller by a

factor of at least four than the theoretical predictions of Chapters 2
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and 4, and the discrepancy may, in fact, be much larger due to uncertain-

ties, in the experimental conditions. Several factors have been

identified that might explain the discrepancy. First off, the

theoretical treatments of atomic motion in a resonant standing wave

presented in Chapters 2 and 4 neglect spontaneous emission, while the

interaction time in the experiment was definitely longer than the natural

lifetime of the sodium D2 transition. This, however, cannot completely

resolve the discrepancy because, according to theory, the beam spreading

that should have occured in a single natural lifetime, during which the

theory is expected to be valid, is already several times that observed in

the experiment. The most probable explanation of the discrepancy is that

the alignment of the atomic and optical beams was not sufficiently

precise to observe the full deflection predicted by theory. According to

Chapter 4, a standing wave can deflect an atom from an initial direction

(e = 0) that is parallel to the planes of maximum and minimum intensity

of the standing wave to a final direction that makes an angle emax =

2(M)lo)*/Pz with respect to these planes. If the atom enters the

standing wave at an angle greater than emax little deflection is

expected. In the experiment the angle emax is approximately 0.6

degrees, and hence the directions of propagation of the atomic and

optical beams should have been orthogonal to one another to an accuracy

better than 0.6° in order to observe the beam spreading predicted by

theory. In a private communication Dr. Oka states

made to make the atomic and laser beams accurately

misalignment could have been more than 1.5°. In v-

that no attempt was

perpendicular and the

ew of this uncertainty
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of alignment, results of the present experiment must be regarded as

inconclusive. Dr. Oka states that he will try to repeat the experiment,

with improved alignment, as soon as possible.
.-

?



Chapter 9

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
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The work reported here began with an attempt to understand the

mechanics of atomic motion in a resonant standing light wave as a

possible method of laser isotope separation. However, it soon became

evident that existing theories of atomic motion in resonant radiation

were not sufficiently well developed to answer a number of questions raised

by this problem. The emphasis of the research therefore naturally

switched from the problem of isotope separation by photodeflection to the

development of more basic aspects of the theory of atomic motion

electromagnetic radiation. The author believes that the contribl

this theory contained in Chapters 3 through 7 now provide a fair”

complete and quantitatively correct description of the influence

electromagnetic wave on the translational motion of an atom, and

in

tions to

Y

of an

that

answers to a wide class of problems involving the resonance-radiation

force can now be obtained by straight forward application of the results

of these chapters. In particular, it is now possible to answer, by

computer calculations, many of the questions encountered in connection

with the problem of isotope separation by photodeflection in a resonant

standing wave. This work is presently being pursued by the author in

collaboration with Dr. A. Bernhardt and Dr. B. Shore at the Lawrence

Livermore Laboratory.

It might be possible to develop a more general theory of atomic

motion in electromagnetic radiation than that considered here, based

on the reduced density matrix for the internal and translational

motions of an atom interacting with the quantized electromagnetic field.

Such a theory would address, in addition to problems of atomic motion

in coherent applied fields, problems of nonequilibrium quantum statistical
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mechanics such as (1) atomic motion in partially coherent light and (2)

relaxation of the atomic velocity distribution to the Maxwell distribution

due to interaction with black body radiation. This is a problem for the

future.
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● Momentum transfer in a standing wave proceeds
at the stimulated rate Q

● In a strong field S2> A

Figure 1.
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Figure 4. Defocusing of atomic trajectories associated with wave function U+.
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Figure 8. Splitting of an atomicbeam by theamplitudegradient
oftheresonantfield.


